File:TraitT.jpg
Original file (1,258 × 1,258 pixels, file size: 604 KB, MIME type: image/jpeg)
Fig.20.12 from page 288 of book «Superfunctions»[1], 2020.
The same picture is used also as Рис.20.12 at page 298 of the Russian version «Суперфункции» [2], 2014.
And also as Figure 5 at page 6537 of article Entire Function with Logarithmic Asymptotic [3] at Applied Mathematical Sciences, 2013.
The image shows the iterates of the Trappmann function \( \mathrm{tra} = z \mapsto z+\exp(z) \): \( y=\mathrm{tra}^n(y) \) versus \(x\) for various values of number \(n\) of iterate.
The \(n\)th iterate of the Trappmann function tra is expressed through its superfunction SuTra and the Abelfunction AuTra: \[\mathrm{tra}^n(z)= \mathrm{SuTra}(n+\mathrm{AuTra}(z)) \] The number \(n\) of iterate in this expression has no need to be integer.
Implementation
Namely this picture is generated using the representation of functions SuTra and AuTra
through the
Doya function,
LambertW function] (Tania function),
SuZex function.
So, files
doya.cin
LambertW.cin
SuZex.cin and
AuZex.cin
should be loaded in order to compile the code below.
C++
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include<complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "Tania.cin" // need for LambertW
#include "doya.cin" // need for LambertW
#include "LambertW.cin" // need for AuZex
#include "SuZex.cin"
#include "AuZex.cin"
z_type tra(z_type z){ return exp(z)+z;}
z_type F(z_type z){ return log(suzex(z));}
z_type G(z_type z){ return auzex(exp(z));}
#include "ado.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; FILE *o;o=fopen("trait.eps","w"); ado(o,604,604);
fprintf(o,"302 302 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(n=-3;n<4;n++) {M(-3,n)L(3,n)}
for(m=-3;m<4;m++) {M(m,-3)L(m,3)}
// M(M_E,0)L(M_E,1) M(0,M_E)L(1,M_E)
fprintf(o,".004 W S\n");
// DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 0 RGB S\n");
// DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 .5 0 RGB S\n");
// M(0,0) L(12.03,12.03) fprintf(o,".04 W 0 1 0 RGB S\n");
DO(m,700){x=-3.02+.02*m; y=Re(tra(x)); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;}
DO(m,700){x=-3.02+.02*m; y=Re(tra(tra(x))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;}
DO(m,700){x=-3.02+.02*m; y=Re(tra(tra(tra(x)))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;}
DO(m,700){x=-3.02+.02*m; y=Re(tra(tra(tra(tra(x))))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;}
DO(m,700){x=-3.02+.02*m; y=Re(tra(tra(tra(tra(tra(x)))))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;}
DO(m,700){x=-3.02+.02*m; y=Re(tra(tra(tra(tra(tra(tra(x))))))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;}
DO(m,700){x=-3.02+.02*m; y=Re(tra(tra(tra(tra(tra(tra(tra(x)))))))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;}
DO(m,700){x=-3.02+.02*m; y=Re(tra(tra(tra(tra(tra(tra(tra(tra(x)))))))));if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;}
fprintf(o,".022 W 0 1 0 RGB S\n");
DO(m,700){y=-3.02+.02*m; x=Re(tra(y)); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>3.03) break;}
DO(m,700){y=-3.02+.02*m; x=Re(tra(tra(y))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>3.03) break;}
DO(m,700){y=-3.02+.02*m; x=Re(tra(tra(tra(y)))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>3.03) break;}
DO(m,700){y=-3.02+.02*m; x=Re(tra(tra(tra(tra(y))))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>3.03) break;}
DO(m,700){y=-3.02+.02*m; x=Re(tra(tra(tra(tra(tra(y)))))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>3.03) break;}
DO(m,700){y=-3.02+.02*m; x=Re(tra(tra(tra(tra(tra(tra(y))))))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>3.03) break;}
DO(m,700){y=-3.02+.02*m; x=Re(tra(tra(tra(tra(tra(tra(tra(y)))))))); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>3.03) break;}
DO(m,700){y=-3.02+.02*m; x=Re(tra(tra(tra(tra(tra(tra(tra(tra(y)))))))));if(m==0) M(x,y) else L(x,y) if(x>3.03||y>3.03) break;}
fprintf(o,".022 W 1 0 1 RGB S\n");
M(-3,-3)L(3,3) fprintf(o,".022 W 0 .6 1 RGB S\n");
for(n=-20;n<21;n+=1){
DO(m,700){x=-3.01 +.02*m; y=Re(G(x)); y=Re(F(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>3.03) break;}
fprintf(o,".01 W 0 0 0 RGB S\n");
}
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf trait.eps");
system( "open trait.pdf"); //for macintosh
getchar(); system("killall Preview"); // For macintosh
}
Latex
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphicx}
\usepackage{rotating}
\paperwidth 606pt
\paperheight 606pt
\topmargin -105pt
\oddsidemargin -73pt
\textwidth 1100pt
\textheight 1100pt
\pagestyle {empty}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\parindent 0pt
\pagestyle{empty}
\begin{document}
\begin{picture}(602,602)
%\put(10,10){\ing{PowPlo}}
\put(0,0){\ing{TraIt}}
\put(311,590){\sx{2.5}{$y$}}
\put(311,495){\sx{2.4}{$2$}}
\put(311,395){\sx{2.4}{$1$}}
\put(311,295){\sx{2.4}{$0$}}
\put(307,194){\sx{2.4}{$-1$}}
\put(307,093.4){\sx{2.4}{$-2$}}
\put(083,308){\sx{2.4}{$-2$}}
\put(183,308){\sx{2.4}{$-1$}}
\put(297,308){\sx{2.4}{$0$}}
\put(397,308){\sx{2.4}{$1$}}
\put(497,308){\sx{2.4}{$2$}}
\put(590,308){\sx{2.5}{$x$}}
\put(117,532){\sx{2.4}{\rot{87}$n\!=\!8$\ero}}
\put(137,532){\sx{2.4}{\rot{86}$n\!=\!7$\ero}}
\put(156,532){\sx{2.4}{\rot{85}$n\!=\!6$\ero}}
\put(177,532){\sx{2.4}{\rot{84}$n\!=\!5$\ero}}
\put(204,532){\sx{2.4}{\rot{83}$n\!=\!4$\ero}}
\put(238,532){\sx{2.4}{\rot{82}$n\!=\!3$\ero}}
\put(278,532){\sx{2.4}{\rot{79}$n\!=\!2$\ero}}
\put(366,532){\sx{2.4}{\rot{71}$n\!=\!1$\ero}}
%\put(264,350){\sx{3.1}{\rot{61}$y\!=\!x\!+\!\mathrm e^x$\ero}}
%\put(427,528){\sx{2.3}{\rot{62}$c\!=\!0.6$\ero}}
\put(448,528){\sx{2.4}{\rot{60}$n\!=\!0.4$\ero}}
\put(469,530){\sx{2.4}{\rot{57}$n\!=\!0.3$\ero}}
\put(491,532){\sx{2.4}{\rot{53}$n\!=\!0.2$\ero}}
\put(517,534){\sx{2.4}{\rot{49}$n\!=\!0.1$\ero}}
\put(541,531){\sx{2.4}{\rot{45}$n\!=\!0$\ero}}
% <br>
\put(521,462){\sx{2.4}{\rot{37}$n\!=\!-0.2$\ero}}
\put(517,423){\sx{2.4}{\rot{30}$n\!=\!-0.4$\ero}}
\put(527,349){\sx{2.4}{\rot{17}$n\!=\!-1$\ero}}
\put(524,261){\sx{2.4}{\rot{8}$n\!=\!-2$\ero}}
\put(523,222){\sx{2.4}{\rot{6}$n\!=\!-3$\ero}}
\put(523,188){\sx{2.4}{\rot{4}$n\!=\!-4$\ero}}
\put(523,161){\sx{2.4}{\rot{3}$n\!=\!-5$\ero}}
\put(523,141){\sx{2.4}{\rot{2}$n\!=\!-6$\ero}}
\put(523,122){\sx{2.4}{\rot{1}$n\!=\!-7$\ero}}
\put(523,104){\sx{2.4}{\rot{1}$n\!=\!-8$\ero}}
\end{picture}
\end{document}
References
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf D.Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
https://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014 - ↑
https://www.m-hikari.com/ams/ams-2013/ams-129-132-2013/kouznetsovAMS129-132-2013.pdf
https://mizugadro.mydns.jp/PAPERS/2013hikari.pdf D.Kouznetsov. Entire Function with Logarithmic Asymptotic. Applied Mathematical Sciences, Vol. 7, 2013, no. 131, 6527 - 6541
Keywords
«Abelfunction», «AuTra», «Book», «Entire Function with Logarithmic Asymptotic», «Iterate», «Superfunction», «Superfunctions», «SuTra», «Trappmann function»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 1,258 × 1,258 (604 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file:
- File:TraItT.jpg (file redirect)