File:QexpMap1263x1243.png
Original file (1,263 × 1,243 pixels, file size: 767 KB, MIME type: image/png)
Summary
Complex map of function «square root of exponential», \( \varphi=\sqrt{\exp} \), improved version from article «Superfunctions and square root of factorial» [1]. In the article, the square root of exponential (shown in the map) is compared to the square root of factorial.
Function \( \varphi(z) = \mathrm{tet}(1/2+\mathrm{ate}(z)) = \exp^{1/2}(z)\)
appears as solution of equation
\( \varphi(\varphi(z))=\exp(z) \)
Existence of this function is shown in 1950 by Hellmuth Kneser [2].
Natural Tetration \(\mathrm{tet}\) and Arctetration \(\mathrm{ate}\!=\!\mathrm{tet}^{-1}\) are implemented in 2009-2010 [3][4] and described in book «Superfunctions» [5][6] (chapters 14 and 15), similar map appears in the left part of figure 15.5 at page 211 of the book for iterate \(n\!=\!0.5\ \).
C++ generator of curves
/* files ado.cin, conto.cin, fsexp.cin, fslog.cin shouls be loaded */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "fsexp.cin"
#include "fslog.cin"
DB Lr=0.31813150520476413531;
DB Li=1.3372357014306894089;
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c; //d; //,cu,cd;
int M=601,M1=M+1;
int N=601,N1=N+1;
DB X[M1],Y[N1]; DB *g, *f, *w; // w is working array.
g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("04.eps","w"); ado(o,1202,1202);
FILE *o;o=fopen("QexpMa.eps","w"); ado(o,1202,1202);
fprintf(o,"601 601 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
DO(m,M1) X[m]=-6+.02*(m-.5);
DO(n,N1) Y[n]=-6+.02*(n-.5);
//for(n=0;n<N1;n++) { Y[n]=1.09*sinh((3./200.)*(n-200)); printf("%3d %9.6f\n",n,Y[n]); }
for(m=-12;m<13;m++){M(m,-6) L(m,6) }
for(n=-12;n<13;n++){M( -6,n) L(6,n)}
fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=999;
f[m*N1+n]=999;}
DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019)
// c=F(z);
c=FSEXP(.5+FSLOG(z));
// p=abs(c-z)/(abs(c)+abs(z)); p=-log(p)/log(10.); if(p>0 && p<17) g[m*N1+n]=p;
p=Re(c); q=Im(c); if(p>-99 && p<99 ){ g[m*N1+n]=p;f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n");
p=.4;q=.2;
for(m=-5;m<5;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".01 W 0 .6 0 RGB S\n");
for(m=0;m<5;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".01 W .8 0 0 RGB S\n");
for(m=0;m<5;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".01 W 0 0 .8 RGB S\n");
for(m= 1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".02 W .8 0 0 RGB S\n");
for(m= 1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".02 W 0 0 .8 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-2*p,2*p); fprintf(o,".02 W .5 0 .5 RGB S\n");
for(m=-10;m<11;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".02 W 0 0 0 RGB S\n");
// fprintf(o,"0 setlinejoin 0 setlinecap\n");
// M(-10,0)L(0,0) fprintf(o,"1 1 1 RGB .02 W S\n");
//#include "plofu.cin"
fprintf(o,"0 setlinejoin 0 setlinecap\n");
M(-6.1, Li)L(Lr, Li)
M(-6.1,-Li)L(Lr,-Li)
fprintf(o,".034 W 1 1 1 RGB S\n");
for(m=0;m<80;m+=2)
{DB x; x=Lr-.1*m;
M(x,Li); L(x-.1,Li);
if(x<-6.) break;
}
for(m=0;m<80;m+=2)
{DB x; x=Lr-.1*m;
M(x,-Li); L(x-.1,-Li);
if(x<-6.) break;
}
fprintf(o,".054 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n");
fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o); free(f); free(g); free(w);
system("epstopdf QexpMa.eps");
system( "open QexpMa.pdf"); //for macintosh
getchar(); system("killall Preview"); //for macintosh
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphicx}
\usepackage{rotating}
\paperwidth 1268pt
\paperheight 1248pt
\topmargin -126pt
\oddsidemargin -70pt
\textwidth 1400pt
\textheight 1400pt
\pagestyle {empty}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\parindent 0pt% <br>
\pagestyle{empty}
\begin{document}
\begin{picture}(1260,1250)
\put(50,24){\ing{QexpMa}}
\put(24,1211){\sx{3.8}{$y$}}
\put(24,1113){\sx{3.8}{$5$}}
\put(24,1013){\sx{3.8}{$4$}}
\put(24,913){\sx{3.8}{$3$}}
\put(24,813){\sx{3.8}{$2$}}
\put(24,713){\sx{3.8}{$1$}}
\put(24,613){\sx{3.8}{$0$}}
\put(-8,514){\sx{3.8}{$-1$}}
\put(-8,414){\sx{3.8}{$-2$}}
\put(-8,314){\sx{3.8}{$-3$}}
\put(-8,214){\sx{3.8}{$-4$}}
\put(-8,114){\sx{3.8}{$-5$}}
\put(-8,15){\sx{3.8}{$-6$}}
\put(9,-9){\sx{3.8}{$-6$}}
\put(109,-9){\sx{3.8}{$-5$}}
\put(209,-9){\sx{3.8}{$-4$}}
\put(309,-9){\sx{3.8}{$-3$}}
\put(409,-9){\sx{3.8}{$-2$}}
\put(509,-9){\sx{3.8}{$-1$}}
\put(644,-9){\sx{3.8}{$0$}}
\put(744,-9){\sx{3.8}{$1$}}
\put(844,-9){\sx{3.8}{$2$}}
\put(944,-9){\sx{3.8}{$3$}}
\put(1044,-9){\sx{3.8}{$4$}}
\put(1144,-9){\sx{3.8}{$5$}}
\put(1235,-8){\sx{3.8}{$x$}}
\put(1158,836){\sx{4.6}{\rot{47}$u\!=\!10$\ero}}
\put(186,810){\sx{5}{\rot{30}$v\!=\!-1$\ero}}
\put(470,834){\sx{5}{\rot{74}$v\!=\!0$\ero}}
\put(254,750){\sx{5}{\bf cut}}
\put(1074,634){\sx{4.3}{\rot{-3}$v\!=\!1$\ero}}
\put(177,614){\sx{5}{$v\!=\!0$}}
\put(1070,590){\sx{4.3}{\rot{2}$v\!=\!-1$\ero}}
\put(392,528){\sx{4.5}{\rot{90}$u\!=\!-0.6$\ero}}
\put(602,564){\sx{5}{\rot{90}$u\!=\!0$\ero}}
\put(722,564){\sx{5}{\rot{90}$u\!=\!1$\ero}}
\put(254,480){\sx{5}{\bf cut}}
\put(186,412){\sx{5}{\rot{-30}$v\!=\!1$\ero}}
\put(136,255){\sx{5}{\rot{-16}$v\!=\!2$\ero}}
\end{picture}
\end{document}
References
- ↑
https://link.springer.com/article/10.3103/S0027134910010029
https://mizugadro.mydns.jp/PAPERS/2010superfae.pdf (English)
https://mizugadro.mydns.jp/PAPERS/2010superfar.pdf (Russian)
D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14) - ↑ http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002175851&physid=phys63#navi Hellmuth Kneser. Reelle analytische Lösungen der Gleichung \( φ(φ(x))=e^x \) und verwandter Funktionalgleichungen. Journal für die reine und angewandte Mathematik / Zeitschriftenband (1950) / Artikel / 56 - 67
- ↑
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
https://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670. - ↑
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
https://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670. - ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
Keywords
«Abelfunction», «ArcTetration», «Book», «BookMap», «Hellmuth Kneser», «Iterate», «Iteration half of exponential», «Iteration half of factorial», «Natural tetration», «Square root of exponential», «Square root of factorial», «Superfunction», «Superfunctions», «Tetration»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 12:49, 14 December 2025 | 1,263 × 1,243 (767 KB) | T (talk | contribs) | == Summary == {{oq|QexpMap1263x1243.png|}} Complex map of function «square root of exponential», \( \varphi=\sqrt{\exp} \), improved version from article «Superfunctions and square root of factorial» <ref name="factorial"> https://link.springer.com/article/10.3103/S0027134910010029 <br> https://mizugadro.mydns.jp/PAPERS/2010superfae.pdf (English)<br> https://mizugadro.mydns.jp/PAPERS/2010superfar.pdf (Russian)<br> D.Kouznetsov, H.Trappmann. Superfunctions and square root of facto... |
You cannot overwrite this file.
File usage
The following page uses this file: