Difference between revisions of "File:Expe1eplotT.jpg"

From TORI
Jump to navigation Jump to search
(add ref)
m (refs)
Line 1: Line 1:
{{oq|Expe1eplotT.jpg|Original file ‎(2,515 × 1,751 pixels, file size: 350 KB, MIME type: image/jpeg) }}
+
{{oq|Expe1eplotT.jpg|Original file ‎(2,515 × 1,751 pixels, file size: 350 KB, MIME type: image/jpeg)|400px}}
   
 
Fig.10.1 at page 117 of book «[[Superfunctions]]»<ref name="bookA">
[[Explicit plot]] of [[exponential]] to [[base e1e]] (thick green curve) and
 
 
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - [[Lambert Academic Publishing]], 2020/7/28
 
</ref><ref name="bookM">https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics... Publisher: [[Lambert Academic Publishing]], 2020.
 
</ref>, 2020.
  +
  +
The same picture appears also as Рис.11.1 at page 132 of the Russian version «[[Суперфункции]]»
  +
<ref>
  +
https://mizugadro.mydns.jp/BOOK/202.pdf
  +
Дмитрий Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014.
  +
</ref>
  +
 
[[Explicit plot]] of [[exponential]] to [[base e1e|base \(\eta\)]] (thick green curve) and
 
that of the [[exponential]] to [[base sqrt2]] (thin red curve)
 
that of the [[exponential]] to [[base sqrt2]] (thin red curve)
   
 
Here, \(\eta\!=\!\exp(1/\mathrm e)\!\approx1.44466786 \ \) is the [[Henryk base]]. At this base, the exponential has only one real [[fixed point]],
 
Here, \(\eta\!=\!\exp(1/\mathrm e)\!\approx1.44466786 \ \) is the [[Henryk base]]. At this base, the exponential has only one real [[fixed point]],
id est, equation \(\exp_\eta(L)\!=\!L\) has only one real solution \(L\!=\!\mathrm e\!\approx\! 2.71~\) and \(\ \exp_{\eta}^{\ \prime}(L)\!=\!1\ \). Henryk Trappmann had expected, for this base, the [[superexponential]] is very interesting because it is very difficult to construct, if at al. However, it happened to be not so <ref>
+
id est, equation \(\exp_\eta(L)\!=\!L\) has only one real solution \(L\!=\!\mathrm e\!\approx\! 2.71~\) and \(\ \exp_{\eta}^{\ \prime}(L)\!=\!1\ \). [[Henryk Trappmann]] thought, for this base, the [[superexponential]] is especially interesting because it is very difficult to construct, if at al. However, it happened to be not so: In 2012, the superesponentials and abelexponentials to this base are reported at [[Mathematics of Computation]] <ref name="e1e">
 
http://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2012-02590-7/S0025-5718-2012-02590-7.pdf <br>
 
http://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2012-02590-7/S0025-5718-2012-02590-7.pdf <br>
 
https://mizugadro.mydns.jp/PAPERS/2012e1eMcom2590.pdf
 
https://mizugadro.mydns.jp/PAPERS/2012e1eMcom2590.pdf
H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). Mathematics of Computation. Math. Comp., v.81 (2012), p. 2207-2227. ISSN 1088-6842(e) ISSN 0025-5718(p)
+
H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). [[Mathematics of Computation]]. Math. Comp., v.81 (2012), p. 2207-2227. ISSN 1088-6842(e) ISSN 0025-5718(p)
 
</ref>.
 
</ref>.
   
 
The thick green curve is \(\ y\!=\!\eta^x\ \).
 
The thick green curve is \(\ y\!=\!\eta^x\ \).
   
In order to show the fixed point, the thin line \(\ y\!=\!x\ \) is drawn.
+
In order to show the real [[fixed point]]s of the [[exponential]]s, the thin line \(\ y\!=\!x\ \) is drawn.
   
For comparison, the exponential to base \(\ b\!=\! \sqrt{2}\ \) is plotted, that has two fixed points, \(\ L\!=\!2\ \) and \(\ L\!=\!4\ \).
+
For comparison, the exponential to base \(\ b\!=\! \sqrt{2}\ \) is plotted; it has two real fixed points, \(\ L\!=\!2\ \) and \(\ L\!=\!4\ \).
   
  +
The [[superfunction]]s and the [[abelfunction]]s of the [[Exponential]] to [[base sqrt2|base \(\sqrt{2}\)]]
This plot is used as Fig.01.1 at page 117 of book «[[Superfunctions]]»<ref name="bookA">
 
  +
are reported at [[Mathematics of Computation]] <ref name="sqrt2">
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - [[Lambert Academic Publishing]], 2020/7/28
 
  +
https://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html <br>
</ref><ref name="bookM">https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]].
 
  +
https://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf
</ref><br>
 
  +
D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
in order to show that not all [[transfer function]]s can be treated with [[Regular iteration]].
 
  +
</ref>, 2010.
   
  +
The [[superfunction]]s and the [[abelfunction]]s of the [[Exponential]] to [[base sqrt2|base \(\exp(1/\mathrm e)\)]]
  +
are reported at [[Mathematics of Computation]] <ref name="e1e"/>, 2012.
   
 
==[[C++]] generator of curves==
 
==[[C++]] generator of curves==
  +
//File [[ado.cin]] should be loaded in order to compile the code below. <pre>
//<pre>
 
 
#include<math.h>
 
#include<math.h>
 
#include<stdio.h>
 
#include<stdio.h>
Line 56: Line 70:
 
}
 
}
 
//</pre>
 
//</pre>
  +
 
==[[Latex]] generator of labels==
 
==[[Latex]] generator of labels==
   
Line 109: Line 124:
 
\end{picture}}
 
\end{picture}}
 
\end{document}
 
\end{document}
</pre>
+
%</pre>
 
==References==
 
==References==
 
{{ref}}
 
{{ref}}
Line 121: Line 136:
 
«[[Exotic iteration]]»,
 
«[[Exotic iteration]]»,
 
«[[Exp]]»,
 
«[[Exp]]»,
  +
«[[Exponential]]»,
  +
«[[Fixed point]]»,
  +
«[[Identity function]]»,
  +
«[[Lambert Academic Publishing]]»,
  +
«[[Mathematics of Computation]]»,
  +
«[[Superfunction]]»,
 
«[[Superfunctions]]»,
 
«[[Superfunctions]]»,
 
«[[]]»,
 
«[[]]»,
Line 132: Line 153:
 
[[Category:BookPlot]]
 
[[Category:BookPlot]]
 
[[Category:C++]]
 
[[Category:C++]]
  +
[[Category:Elementary function]]
 
[[Category:Explicit plot]]
 
[[Category:Explicit plot]]
 
[[Category:Exotic iteration]]
 
[[Category:Exotic iteration]]
 
[[Category:Exponential]]
 
[[Category:Exponential]]
 
[[Category:Fixed point]]
 
[[Category:Fixed point]]
  +
[[Category:Identity function]]
  +
[[Category:Lambert Academic Publishing]]
 
[[Category:Latex]]
 
[[Category:Latex]]
  +
[[Category:Mathematics of computation]]
 
[[Category:Transfer function]]
 
[[Category:Transfer function]]
 
[[Category:Superfunction]]
 
[[Category:Superfunction]]

Revision as of 12:37, 24 December 2025


Fig.10.1 at page 117 of book «Superfunctions»[1][2], 2020.

The same picture appears also as Рис.11.1 at page 132 of the Russian version «Суперфункции» [3]

Explicit plot of exponential to base \(\eta\) (thick green curve) and that of the exponential to base sqrt2 (thin red curve)

Here, \(\eta\!=\!\exp(1/\mathrm e)\!\approx1.44466786 \ \) is the Henryk base. At this base, the exponential has only one real fixed point, id est, equation \(\exp_\eta(L)\!=\!L\) has only one real solution \(L\!=\!\mathrm e\!\approx\! 2.71~\) and \(\ \exp_{\eta}^{\ \prime}(L)\!=\!1\ \). Henryk Trappmann thought, for this base, the superexponential is especially interesting because it is very difficult to construct, if at al. However, it happened to be not so: In 2012, the superesponentials and abelexponentials to this base are reported at Mathematics of Computation [4].

The thick green curve is \(\ y\!=\!\eta^x\ \).

In order to show the real fixed points of the exponentials, the thin line \(\ y\!=\!x\ \) is drawn.

For comparison, the exponential to base \(\ b\!=\! \sqrt{2}\ \) is plotted; it has two real fixed points, \(\ L\!=\!2\ \) and \(\ L\!=\!4\ \).

The superfunctions and the abelfunctions of the Exponential to base \(\sqrt{2}\) are reported at Mathematics of Computation [5], 2010.

The superfunctions and the abelfunctions of the Exponential to base \(\exp(1/\mathrm e)\) are reported at Mathematics of Computation [4], 2012.

C++ generator of curves

//File ado.cin should be loaded in order to compile the code below.
#include<math.h>
 #include<stdio.h>
 #include<stdlib.h>
 #define DB double
 #define DO(x,y) for(x=0;x<y;x++)
 #include "ado.cin"

 DB B=sqrt(2.);

int main(){ int m,n; double x,y; FILE *o;
 o=fopen("expe1eplot.eps","w"); ado(o,1204,804);
 fprintf(o,"602 2 translate 100 100 scale\n");
 #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
 #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
 for(m=-6;m<7;m++) {M(m,0)L(m,8)}
 for(m=0;m<9;m++) {M(-6,m)L(6,m)}
 fprintf(o,"2 setlinecap .01 W S\n 1 setlinejoin \n");
 M(M_E,0)L(M_E,M_E)L(0,M_E)  fprintf(o,".007 W S\n");

  for(m=0;m<123;m++){x=-6.1+.1*m; y=exp(log(B)*x); if(m==0)M(x,y) else L(x,y);} fprintf(o,".02 W .8 0 0 RGB S\n");

  for(m=0;m<123;m++){x=-6.1+.1*m; y=exp(x/M_E); if(m==0)M(x,y) else L(x,y);} fprintf(o,".04 W 0 .6 0 RGB S\n");

 M(-.1,-.1)L(6.1,6.1) fprintf(o,".016 W 0 0 0 RGB S\n\n");
 fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
   system("epstopdf expe1eplot.eps");
   system(    "open expe1eplot.pdf");            
   getchar(); system("killall Preview");//for mac
 }
//

Latex generator of labels

%
\documentclass[12pt]{article} 
\usepackage{geometry} 
\usepackage{graphicx} 
\usepackage{rotating} 
\paperwidth 1212pt 
\paperheight 844pt 
\topmargin -92pt 
\oddsidemargin -80pt 
\textwidth 1604pt 
\textheight 1604pt 
\pagestyle {empty} 
\newcommand \sx {\scalebox} 
\newcommand \rot {\begin{rotate}} 
\newcommand \ero {\end{rotate}} 
\newcommand \ing {\includegraphics} 
\parindent 0pt
\pagestyle{empty} 
\begin{document}
{\begin{picture}(1202,802)
\put(590,792){\sx{4.2}{$y$}}
\put(590,698){\sx{4.2}{$7$}} 
\put(590,598){\sx{4.2}{$6$}}
\put(590,498){\sx{4.2}{$5$}}
\put(590,398){\sx{4.2}{$4$}}
\put(590,298){\sx{4.2}{$3$}}
\put(620,274){\sx{4.2}{$\mathrm e$}}
\put(590,198){\sx{4.2}{$2$}}
\put(590,098){\sx{4.2}{$1$}}
\put(080,-22){\sx{4}{$-5$}}
\put(180,-22){\sx{4}{$-4$}}
\put(281,-22){\sx{4}{$-3$}}
\put(381,-22){\sx{4}{$-2$}}
\put(482,-22){\sx{4}{$-\!1$}}
\put(603.6,-22){\sx{4}{$0$}}
\put(703.7,-22){\sx{4}{$1$}}
\put(803.8,-22){\sx{4}{$2$}}
\put(877.,16){\sx{4}{$\mathrm e$}}
\put(903.9,-22){\sx{4}{$3$}}
\put(1004.0,-22){\sx{4}{$4$}}
\put(1104.1,-22){\sx{4}{$5$}}
\put(1192.2,-22){\sx{4.3}{$x$}}
%\put(0815,520){\sx{5.6}{\rot{78}$y\!=\!\exp(x)$\ero}}
\put(1118,678){\sx{4.5}{\rot{69}$y\!=\!\eta^x$\ero}}
%\put(1076,606){\sx{4.1}{\rot{67}$y\!=\!\exp_{\eta}(x)$\ero}}
%\put(1100,520){\sx{4}{\rot{62}$y\!=\!\exp_{_{\!\!\sqrt{2}}}(x)$\ero}}
\put(1130,550){\sx{4}{\rot{61}$y\!=\!(\sqrt{2})^x$\ero}}
\put(1134,488){\sx{5}{\rot{45.1}$y\!=\!x$\ero}}
\put(10,10){\ing{expe1eplot}}
\end{picture}}
\end{document} 
%

References

  1. https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - Lambert Academic Publishing, 2020/7/28
  2. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics... Publisher: Lambert Academic Publishing, 2020.
  3. https://mizugadro.mydns.jp/BOOK/202.pdf Дмитрий Кузнецов. Суперфункции. Lambert Academic Publishing, 2014.
  4. 4.0 4.1 http://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2012-02590-7/S0025-5718-2012-02590-7.pdf
    https://mizugadro.mydns.jp/PAPERS/2012e1eMcom2590.pdf H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). Mathematics of Computation. Math. Comp., v.81 (2012), p. 2207-2227. ISSN 1088-6842(e) ISSN 0025-5718(p)
  5. https://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html
    https://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:12, 1 December 2018Thumbnail for version as of 06:12, 1 December 20182,515 × 1,751 (350 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata