Difference between revisions of "File:Vladi10.jpg"
(refs) |
|||
| Line 1: | Line 1: | ||
| + | {{oq|Vladi10.jpg|Original file (2,902 × 729 pixels, file size: 391 KB, MIME type: image/jpeg)}} |
||
| ⚫ | |||
| + | ==Summary== |
||
| + | Fig.15.2 from page 206 of book «[[Superfunctions]]» |
||
| + | <ref> |
||
| + | https://mizugadro.mydna.jp/BOOK/468.pdf |
||
| + | Dmitrii Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020. |
||
| + | </ref>. 2020. |
||
| + | This figure appears also as Рис.15.2 at page 208 of the Russian version «[[Суперфункции]]» |
||
| − | |||
| + | <ref> |
||
| − | Usage: this is figure 15.2 of the book [[Суперфункции]] (2014, In Russian) <ref> |
||
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
| − | http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br> |
||
http://mizugadro.mydns.jp/BOOK/202.pdf |
http://mizugadro.mydns.jp/BOOK/202.pdf |
||
Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
||
| + | </ref>, 2014. |
||
| − | </ref>; the English version is in preparation in 2015. |
||
| − | + | Similar figure appears also in the [[Vladikavkaz Matehmatical Journal]] |
|
<ref> |
<ref> |
||
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf |
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf |
||
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
||
Figure 10. |
Figure 10. |
||
| − | </ref>. |
+ | </ref>, 2010. |
| ⚫ | |||
| ⚫ | |||
| − | <references/> |
||
| + | The maps show |
||
| + | \( u+\mathrm i v= \mathrm{fsl}(x+\mathrm i y) \) , left; |
||
| ⚫ | |||
| + | |||
| + | \( \displaystyle D_{\mathrm A} = - \lg \left( |
||
| + | \frac |
||
| + | {|\mathrm{fsl}(\exp(z))-1-\mathrm{fsl}(z)|} |
||
| + | {|\mathrm{fsl}(\exp(z))-1|+|\mathrm{fsl}(z)|} |
||
| + | \right) |
||
| + | \) , center and |
||
| + | |||
| + | \( \displaystyle D_{\mathrm B} = - \lg \left( |
||
| + | \frac |
||
| + | {|\mathrm{fsl}(\ln(z))+1-\mathrm{fsl}(z)|} |
||
| + | {|\mathrm{fsl}(\ln(z))+1|+|\mathrm{fsl}(z)|} |
||
| + | \right) |
||
| + | \) , right |
||
| ⚫ | |||
| + | /* |
||
[[ado.cin]], |
[[ado.cin]], |
||
[[conto.cin]], |
[[conto.cin]], |
||
[[fslog.cin]] |
[[fslog.cin]] |
||
| − | should be loaded in order to compile the code below. |
+ | should be loaded in order to compile the code below.*/ |
| + | <pre> |
||
| − | |||
| − | <poem><nomathjax><nowiki> |
||
| − | |||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 117: | Line 136: | ||
getchar(); system("killall Preview"); |
getchar(); system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| − | |||
| ⚫ | |||
| ⚫ | |||
| + | /* |
||
[[ado.cin]], |
[[ado.cin]], |
||
[[conto.cin]], |
[[conto.cin]], |
||
[[fslog.cin]] |
[[fslog.cin]] |
||
should be loaded in order to compile the code below. |
should be loaded in order to compile the code below. |
||
| + | <pre> |
||
| − | |||
| − | <poem><nomathjax><nowiki> |
||
| − | |||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 188: | Line 205: | ||
getchar(); system("killall Preview"); |
getchar(); system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| − | |||
| ⚫ | |||
| ⚫ | |||
| + | /* |
||
[[ado.cin]], |
[[ado.cin]], |
||
[[conto.cin]], |
[[conto.cin]], |
||
[[fslog.cin]] |
[[fslog.cin]] |
||
| − | should be loaded in order to compile the code below. |
+ | should be loaded in order to compile the code below. */ |
| + | <pre> |
||
| − | |||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 254: | Line 270: | ||
//getchar(); system("killall Preview");//macintosh |
//getchar(); system("killall Preview");//macintosh |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==[[Latex]] combiner== |
==[[Latex]] combiner== |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\usepackage{graphicx} |
\usepackage{graphicx} |
||
| Line 310: | Line 326: | ||
\end{document} |
\end{document} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| ⚫ | |||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | «[[]]», |
||
| + | «[[]]», |
||
| + | «[[Abel function]]», |
||
| + | «[[Abelfunction]]», |
||
| + | «[[Agreement]]», |
||
| + | «[[Approximation]]», |
||
| + | «[[Arctetration]]», |
||
| + | «[[Book]]», |
||
| + | «[[BookMap]]», |
||
| + | «[[C++]]», |
||
| + | «[[Complex map]]», |
||
| + | «[[Exp]]», |
||
| + | «[[Latex]]», |
||
| + | «[[Natural tetration]]», |
||
| + | «[[Numerical implementation]]», |
||
| + | «[[Superfunctions», |
||
| + | «[[Test]]», |
||
| + | «[[Tetration]]», |
||
| + | «[[ado.cin]]», |
||
| + | «[[conto.cin]]», |
||
| + | «[[fsexp.cin]]», |
||
| + | «[[fslog.cin]]», |
||
[[Category:Abel function]] |
[[Category:Abel function]] |
||
[[Category:Abelfunction]] |
[[Category:Abelfunction]] |
||
[[Category:Agreement]] |
[[Category:Agreement]] |
||
| ⚫ | |||
[[Category:Arctetration]] |
[[Category:Arctetration]] |
||
[[Category:Book]] |
[[Category:Book]] |
||
| Line 321: | Line 365: | ||
[[Category:Complex map]] |
[[Category:Complex map]] |
||
[[Category:Exp]] |
[[Category:Exp]] |
||
| + | [[Category:Exponentiation]] |
||
[[Category:Latex]] |
[[Category:Latex]] |
||
[[Category:Natural tetration]] |
[[Category:Natural tetration]] |
||
| + | [[Category:Numerical implementation]] |
||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Test]] |
||
[[Category:Tetration]] |
[[Category:Tetration]] |
||
| ⚫ | |||
Latest revision as of 16:02, 21 December 2025
Summary
Fig.15.2 from page 206 of book «Superfunctions» [1]. 2020.
This figure appears also as Рис.15.2 at page 208 of the Russian version «Суперфункции» [2], 2014.
Similar figure appears also in the Vladikavkaz Matehmatical Journal [3], 2010.
The figure shows the Complex map of approximation "fsl" of the natural arctetration ate and the agreements D at the substitution of this approximation into the Abel ewuation:
The maps show
\( u+\mathrm i v= \mathrm{fsl}(x+\mathrm i y) \) , left;
\( \displaystyle D_{\mathrm A} = - \lg \left( \frac {|\mathrm{fsl}(\exp(z))-1-\mathrm{fsl}(z)|} {|\mathrm{fsl}(\exp(z))-1|+|\mathrm{fsl}(z)|} \right) \) , center and
\( \displaystyle D_{\mathrm B} = - \lg \left( \frac {|\mathrm{fsl}(\ln(z))+1-\mathrm{fsl}(z)|} {|\mathrm{fsl}(\ln(z))+1|+|\mathrm{fsl}(z)|} \right) \) , right
C++ generator of the compelx map
/* ado.cin, conto.cin, fslog.cin should be loaded in order to compile the code below.*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "fslog.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int M=200,M1=M+1;
int N=402,N1=N+1;
//DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
//char v[M1*N1]; // v is working array
//DB X[201],Y[403], g[40803],f[40803], w[40803]; // w is working array.
DB X[201],Y[403], g[81003],f[81003], w[81003]; // w is working array.
char v[81003]; // v is working array
//FILE *o;o=fopen("figslo.eps","w");ado(o,0,0,62,62);
FILE *o;o=fopen("vladi10a.eps","w");ado(o,62,62);
fprintf(o,"21 31 translate\n 10 10 scale\n");
z_type L=z_type(.31813150520476413, 1.3372357014306895);
p=Re(L); q=Im(L); DB R=abs(L); DB A=arg(L);
fprintf(o,"0 0 %9.6f %9.6f %9.6f arc C .5 1 0 RGB F\n",R,-180/M_PI*A,180/M_PI*A);
// DB sx=3./sinh(.01*N);
// DO(m,M1) X[m]=sx*sinh(.02*(m-M/2-.5));
DO(m,M1) X[m]=-1.+.02*(m-.5);
//DO(n,N1)Y[n]=-3.3+.014*(n-.5);
DO(n,N1)Y[n]=-2.+.01*(n-.5);
//DB sy=6./sinh(.01*N);
//DO(n,N1) Y[n]=sy*sinh(.02*(n-N/2-.5));
for(m=-2;m<4;m++) { if(m==0){M(m,-2.1)L(m,2.1)}
else {M(m,-2)L(m,2)} }
for(n=-2;n<3;n++) {M( -2,n)L(3,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999; }
//z_type F[M1*N1];
DO(m,M1){x=X[m]; printf("50 run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=slo(z);
p=Re(c); q=Im(c);
if(p>-9 && p<9 && q>-9 && q<9 ) {g[m*N1+n]=p;f[m*N1+n]=q;}
}}
p=.5;q=.4;
//p=2;q=1;
fprintf(o,"1 setlinecap 1 setlinejoin\n");
for(m=-19;m<19;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q);
fprintf(o,".006 W 0 .6 0 RGB S\n");
for(m=0;m<29;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);
fprintf(o,".006 W .9 0 0 RGB S\n");
for(m=0;m<29;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);
fprintf(o,".006 W 0 0 .9 RGB S\n");
for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".024 W .8 0 0 RGB S\n");
for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".024 W 0 0 .8 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".024 W .5 0 .5 RGB S\n");
for(m=-31;m<32;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".024 W 0 0 0 RGB S\n");
//#include"plofu.cin"
fprintf(o,"0 setlinecap 0 setlinejoin\n");
M(Re(Zo),Im(Zo)) L(-2.02,Im(Zo))
M(Re(Zo),-Im(Zo)) L(-2.02,-Im(Zo))
fprintf(o,".02 W 1 1 1 RGB 0 setlinecap S\n");
DO(m,8){ M(Re(Zo)-.31*(m ), Im(Zo)) L(Re(Zo)-.31*(m+.5), Im(Zo)) }
DO(m,8){ M(Re(Zo)-.31*(m ),-Im(Zo)) L(Re(Zo)-.31*(m+.5),-Im(Zo)) }
fprintf(o,".05 W 0 0 0 RGB S\n");
// fprintf(o,".04 W 0 0 0 RGB [.1 .1] 1 setdash S\n");
//setdash is not supported
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi10a.eps");
system( "open vladi10a.pdf");
getchar(); system("killall Preview");
}
C++ generator of nap of agreement DA
/* ado.cin, conto.cin, fslog.cin should be loaded in order to compile the code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
//#include <complex.h>
//#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "fslog.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int M=200,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("figsloE.eps","w");ado(o,0,0,52,52);
FILE *o;o=fopen("vladi10b.eps","w");ado(o,52,52);
fprintf(o,"21 31 translate\n 10 10 scale\n");
z_type L=z_type(.31813150520476413, 1.3372357014306895);
p=Re(L); q=Im(L); DB R=abs(L); DB A=arg(L);
fprintf(o,"0 0 %9.6f %9.6f %9.6f arc C .5 1 0 RGB F\n",R,-180/M_PI*A,180/M_PI*A);
DO(m,M1) X[m]=-1.2+.024*(m-.5);
//DO(n,N1) Y[n]=-1.2 +.02*n*(1.+.000008*(n-8.)*(n-8));
DO(n,N1) Y[n]=-2.2 +.024*n;
//DB sy=6./sinh(.005*N);
//DO(n,N1) Y[n]=sy*sinh(.01*(n-N/2-.5+10));
for(m=-2;m<4;m++) { if(m==0){M(m,-2.1)L(m,2.08)}
else {M(m,-2)L(m,2)} }
for(n=-2;n<3;n++) {M( -2,n)L(3,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999; }
for(m=0;m<M1;m++){x=X[m]; printf("50 run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=slo(exp(z))-1.;
d=slo(z);
p=abs(c-d);
p=-log(p)/log(10.);
// p=Re(log(c))/log(10.);
if(p>-99 && p<99) g[m*N1+n]=p;
}}
#include"plodi.cin"
//M(-10,0)L(-2,0)fprintf(o,".04 W 0 0 0 RGB [.1 .1] 0 setdash S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi10b.eps");
system( "open vladi10b.pdf");
getchar(); system("killall Preview");
}
C++ generator of map of agreement DB
/* ado.cin, conto.cin, fslog.cin should be loaded in order to compile the code below. */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "fslog.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int M=200,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("vladi10c.eps","w");ado(o,52,52);
fprintf(o,"21 31 translate\n 10 10 scale\n");
z_type L=z_type(.31813150520476413, 1.3372357014306895);
p=Re(L); q=Im(L); DB R=abs(L); DB A=arg(L);
fprintf(o,"0 0 %9.6f %9.6f %9.6f arc C .5 1 0 RGB F\n",R,-180/M_PI*A,180/M_PI*A);
DO(m,M1) X[m]=-1.2+.024*(m-.5);
//DO(n,N1) Y[n]=-1.2 +.02*n*(1.+.000008*(n-8.)*(n-8));
DO(n,N1) Y[n]=-2.2 +.024*n;
//DB sy=6./sinh(.005*N);
//DO(n,N1) Y[n]=sy*sinh(.01*(n-N/2-.5+10));
for(m=-2;m<4;m++) { if(m==0){M(m,-2.1)L(m,2.08)}
else {M(m,-2)L(m,2)} }
for(n=-2;n<3;n++) {M( -2,n)L(3,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999; }
DO(m,M1){x=X[m]; printf("50 run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=slo(log(z))+1.;
d=slo(z);
p=abs(c-d);
p=-log(p)/log(10.);
// p=Re(log(c))/log(10.);
if(p>-99 && p<99) g[m*N1+n]=p;
}}
#include"plodi.cin"
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi10c.eps");
system( "open vladi10c.pdf");//linux
//getchar(); system("killall Preview");//macintosh
}
Latex combiner
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{rotating}
\usepackage{geometry}
\paperwidth 418px
%\paperheight 134px
\paperheight 105px
\topmargin -106pt
\oddsidemargin -94pt
\pagestyle{empty}
\begin{document}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \fsloax {
\put(-2.3,49){\sx{.45}{$y$}}
\put(-2.3,39.6){\sx{.45}{$1$}}
\put(-2.3,29.6){\sx{.45}{$0$}}
\put(-6,19.6){\sx{.45}{$-1$}}
\put(-6, 9.6){\sx{.45}{$-2$}}
\put( 7 ,6.6){\sx{.45}{$-\!1$}}
\put(19.8 , 6.6){\sx{.45}{$0$}}
\put(30 , 6.6){\sx{.45}{$1$}}
\put(40 , 6.6){\sx{.45}{$2$}}
\put(48.6 , 6.6){\sx{.45}{$x$}}
}
\hskip 17pt
%\sx{2.75}{\begin{picture}(60,55)
\sx{2.34}{\begin{picture}(60,50)
\put(0,0){\includegraphics{vladi10a}}
\fsloax
\put(32.2,25.8){\rot{90}\sx{.4}{$u\!=\!0$}\ero}
\put(37,29.8){\sx{.4}{$v\!=\!0$}}
\end{picture}}
\sx{2.34}{\begin{picture}(60,50)
%\put(0,0){\includegraphics{figsloE}}
\put(0,0){\includegraphics{vladi10b}}
\fsloax
\put(32,44){\sx{.5}{$D_{\rm A}\!<\!1$}}
\put(21,33){\sx{.55}{$15$}}
\end{picture}}
\sx{2.34}{\begin{picture}(50,50)
%\put(0,0){\includegraphics{figsloL}}
\put(0,0){\includegraphics{vladi10c}}
\fsloax
\put(3,33){\sx{.5}{$D_{\rm B}\!<\!1$}}
\put(32,33){\sx{.55}{$15$}}
\end{picture}}
\end{document}
Refereces
- ↑ https://mizugadro.mydna.jp/BOOK/468.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. - ↑ http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. Figure 10.
Keywords
«[[]]», «[[]]», «Abel function», «Abelfunction», «Agreement», «Approximation», «Arctetration», «Book», «BookMap», «C++», «Complex map», «Exp», «Latex», «Natural tetration», «Numerical implementation», «[[Superfunctions», «Test», «Tetration», «ado.cin», «conto.cin», «fsexp.cin», «fslog.cin», [[Category:Approximation
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:14, 1 December 2018 | 2,902 × 729 (391 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.