Difference between revisions of "File:Logi5ab400.jpg"

From TORI
Jump to navigation Jump to search
($ -> \( ; refs ; pre ; keywords ; misprint)
 
Line 1: Line 1:
  +
{{oq|Logi5ab400.jpg|Original file ‎(2,357 × 1,571 pixels, file size: 1,000 KB, MIME type: image/jpeg) }}
[[Superfunction]] $F$ of the [[logistic operator]]
 
   
 
[[Superfunction]] \(f\) of the [[logistic operator]]
$T(z)= z\,z\,(1\!-\!z)$
 
   
  +
\[
constructed with the [[regular iteration]] at the upoer [[fixed point]]
 
 
T(z)= s\,z\,(1\!-\!z)
$L\!=\!1-1/s$ for $s\!=\!4$.
 
  +
\]
   
 
constructed with the [[regular iteration]] at the upper [[fixed point]]
Graphic at the top: explicit plot $y\!=\!f(x)$
 
 
\(\ L\!=\!1-1/s\ \) for \(\ s\!=\!4 \)
  +
 
Graphic at the top: explicit plot \(y\!=\!f(x)\)
   
 
[[Complex map]] at the bottom:
 
[[Complex map]] at the bottom:
  +
\[
$u\!+\!\mathrm i v=F(x\!+\!\mathrm i y)$
+
u\!+\!\mathrm i v=f(x\!+\!\mathrm i y)
  +
\]
  +
  +
This map appears as Fig.7.15 at page 87 of book
  +
«[[Superfunctions]]»<ref>
  +
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28
  +
</ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]].
  +
</ref>
  +
<br>
  +
in order to show that for the [[Holomorphic extension of the logistic sequence]]
  +
<ref>
  +
https://link.springer.com/article/10.3103/S0027134910020049 <br>
  +
http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf
  +
D.Kouznetsov. [[Holomorphic extension of the logistic sequence]]. [[Moscow University Physics Bulletin]], 2010, No.2, p.91-98. (Russian version: p.24-31)
  +
</ref>,
  +
the [[superfunction]]s constructed with the [[regular iteration]]
  +
at different [[fixed point]]s are very different,
  +
although they satisfy the same [[Transfer equation]]
  +
  +
\[
  +
F(z\!+\!1) = T(F(z))
  +
\]
   
 
==[[C++]] generator of the graphic at the top==
 
==[[C++]] generator of the graphic at the top==
   
Files
+
//Files
 
[[ado.cin]],
 
[[ado.cin]],
 
[[logiu.cin]]
 
[[logiu.cin]]
 
should be loaded to the working directory in order to compile the code below
 
should be loaded to the working directory in order to compile the code below
   
  +
<pre>
<poem><nomathjax><nowiki>
 
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 90: Line 116:
 
}
 
}
   
  +
</pre>
</nowiki></nomathjax></poem>
 
   
 
==[[C++]] generator of the map at the bottom==
 
==[[C++]] generator of the map at the bottom==
   
 
// Files [[ado.cin]], [[conto.cin]], [[logiu.cin]] should be loaded in order to compile the [[C++]] code below.
 
// Files [[ado.cin]], [[conto.cin]], [[logiu.cin]] should be loaded in order to compile the [[C++]] code below.
  +
<pre>
 
<poem><nomathjax><nowiki>
 
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 145: Line 170:
 
getchar(); system("killall Preview");
 
getchar(); system("killall Preview");
 
}
 
}
  +
</pre>
</nowiki></nomathjax></poem>
 
   
 
==[[Latex]] generator of the labels==
 
==[[Latex]] generator of the labels==
   
  +
<pre>
<poem><nomathjax><nowiki>
 
 
\documentclass[12pt]{article}
 
\documentclass[12pt]{article}
 
\usepackage{geometry}
 
\usepackage{geometry}
Line 215: Line 240:
 
\end{picture}}
 
\end{picture}}
 
\end{document}
 
\end{document}
  +
</pre>
</nowiki></nomathjax></poem>
 
 
 
==References==
 
==References==
  +
{{ref}}
  +
  +
{{fer}}
  +
==Keywords==
  +
  +
«[[Holomorphic extension of the Logistic sequence]]»,
  +
«[[LogisitcOperator]]»,
  +
<b>«[[LogisticSequence]]»</b>,
  +
«[[Regular iteration]]»,
  +
«[[Table of superfunctions]]»,
  +
«[[Transfer equation]]»,
 
«[[Superfunction]]»,
  +
«[[Superfunctions]]»,
   
[[Category:Superfunction]]
 
[[Category:Logistic operator]]
 
[[Category:Explicit plot]]
 
[[Category:Complex map]]
 
 
[[Category:Book]]
 
[[Category:Book]]
[[Category:BookPlot]]
 
 
[[Category:BookMap]]
 
[[Category:BookMap]]
 
[[Category:BookPlot]]
 
[[Category:C++]]
 
[[Category:C++]]
 
[[Category:Complex map]]
  +
[[Category:Elutin Pavel Vyacheslavovich]]
 
[[Category:Explicit plot]]
 
[[Category:Latex]]
 
[[Category:Latex]]
 
[[Category:Logistic operator]]
  +
[[Category:Logistic sequence]]
  +
[[Category:Regular iteration]]
  +
[[Category:Superfunction]]
  +
[[Category:Superfunctions]]

Latest revision as of 21:14, 21 August 2025


Superfunction \(f\) of the logistic operator

\[ T(z)= s\,z\,(1\!-\!z) \]

constructed with the regular iteration at the upper fixed point \(\ L\!=\!1-1/s\ \) for \(\ s\!=\!4 \)

Graphic at the top: explicit plot \(y\!=\!f(x)\)

Complex map at the bottom: \[ u\!+\!\mathrm i v=f(x\!+\!\mathrm i y) \]

This map appears as Fig.7.15 at page 87 of book «Superfunctions»[1][2]
in order to show that for the Holomorphic extension of the logistic sequence [3], the superfunctions constructed with the regular iteration at different fixed points are very different, although they satisfy the same Transfer equation

\[ F(z\!+\!1) = T(F(z)) \]

C++ generator of the graphic at the top

//Files ado.cin, logiu.cin should be loaded to the working directory in order to compile the code below

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
//#include "efjh.cin"
//#include "u.cin"
#include "logiu.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
  int M=801,M1=M+1;
  int N=401,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("logi5a4x.eps","w");ado(o,164,84);
fprintf(o,"102 42 translate\n 20 20 scale\n");
DO(m,M1) X[m]=-5.+.01*(m-.5);
DO(n,N1) Y[n]=-2.+.01*(n-.5);

for(m=-5;m<4;m++){if(m==0){M(m,-2.04)L(m,2.04)} else{M(m,-2)L(m,2)}}
for(n=-2;n<3;n++){         M(  -5  ,n)L(3,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");

maq(4.);
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); 
//      c=E(H(z))-1.;
//      c=F(1.+E(0.1*z));
        c=U(z);
//      c=F(.5+E(z));
//      c=boe(z);
//      c=.5*(1.-cos(exp((z+1.)/LQ)));
//      d=H(F(z-1.));
//      p=abs(c-d)/(abs(c)+abs(d));  p=-log(p)/log(10.)-1.;
//      if(p>-4.9 && p<20) g[m*N1+n]=p;
        p=Re(c);q=Im(c);        
        if(p>-4.9 && p<4.9)     {g[m*N1+n]=p;}
//      if(q>-4.9 && q<4.9)     {f[m*N1+n]=q;}
        if(q>-4.9 && q<4.9 && fabs(q)>1.e-11 )  {f[m*N1+n]=q;}
                        }}

fprintf(o,"1 setlinejoin 2 setlinecap\n"); 
//p=.8;q=.4;
p=.8;q=.3;
//#include"plof.cin"
for(m=-3;m<3;m++) 
for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".004 W 0 .6 0 RGB S\n");
for(m=0;m<2;m++) 
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q);fprintf(o,".004 W .9 0 0 RGB S\n");
for(m=0;m<2;m++) 
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".004 W 0 0 .9 RGB S\n");

for(m=1;m<6;m++)  conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);   fprintf(o,".016 W .9 0 0 RGB S\n");
for(m=1;m<6;m++)  conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);   fprintf(o,".016 W 0 0 .9 RGB S\n");
for(m=-4;m<6;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p);   fprintf(o,".016 W 0 0 0 RGB S\n");

                  conto(o,f,w,v,X,Y,M,N, (0.  ),-p,p);   fprintf(o,".016 W .6 0 .6 RGB S\n");

fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
        system("epstopdf logi5a4x.eps"); // for linux
        system(    "open logi5a4x.pdf"); // for mac
        getchar(); system("killall Preview");
}

C++ generator of the map at the bottom

// Files ado.cin, conto.cin, logiu.cin should be loaded in order to compile the C++ code below.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "conto.cin"
#include "ado.cin"
//#include "efjh.cin"
#include "logiu.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi5b4x.eps","w");ado(o,164,24);
fprintf(o,"102 2 translate\n 20 20 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);

for(m=-5;m<4;m++){if(m==0){M(m,-.04)L(m,1.04)} else{M(m,0)L(m,1)}}
for(n=0;n<2;n++){       M(  -5,n)L(3,n)}
fprintf(o,".006 W 0 0 0 RGB S\n");

M(-5,.75)L(3,.75)
fprintf(o,".004 W 0 0 0 RGB S\n");

fprintf(o,"1 setlinejoin 2 setlinecap\n");

maq(4.);
DO(m,1034) { x=-5.08+8.*sqrt(.001*m); y=Re(U(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".01 W 0 .5 0 RGB S\n");

/*
maq(3.99);
DO(m,1001) { x=-5.+10.*sqrt(.001*m); y=Re(U(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");

maq(4.01);
DO(m,1001) { x=-5.+10.*sqrt(.001*m); y=Re(U(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 0 0 1 RGB [.01 .03] 0 setdash S\n");
*/
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
        system("epstopdf logi5b4x.eps");
        system(    "open logi5b4x.pdf");
        getchar(); system("killall Preview");
}

Latex generator of the labels

\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 426pt
\paperheight 284pt
\topmargin -108pt
\oddsidemargin -90pt
\newcommand \sx {\scalebox}
\newcommand \ing \includegraphics
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}

\sx{2.6}{\begin{picture}(140,23) 
\put( 1, 1){\ing{logi5b4x}}
\put( 1, 21){\sx{.3}{$1$}}
\put( 1, 2){\sx{.3}{$0$}}

\put( 20.2,  0){\sx{.3}{$-4$}}
\put( 40.2,  0){\sx{.3}{$-3$}}
\put( 60.2,  0){\sx{.3}{$-2$}}
\put( 80.2,  0){\sx{.3}{$-1$}}
\put(102.6,  0){\sx{.3}{$0$}}
\put( 122.7,  0){\sx{.3}{$1$}}
\put(142.7,  0){\sx{.3}{$2$}}
\put(162,  0.4){\sx{.3}{$x$}}
\end{picture}}

%\sx{3.04}{\begin{picture}(140,85) 
\sx{2.6}{\begin{picture}(140,85) 
\put( 1, 1){\ing{logi5a4x}}
\put(  1, 81){\sx{.3}{$y$}}
\put(  1, 62){\sx{.3}{$1$}}
\put(  1, 42){\sx{.3}{$0$}}
\put( -1, 22){\sx{.3}{$-\!1$}}
%\put( -1, 2){\sx{.3}{$-\!2$}}
\put( 20.2,  0){\sx{.3}{$-4$}}
\put( 40.2,  0){\sx{.3}{$-3$}}
\put( 60.2,  0){\sx{.3}{$-2$}}
\put( 80.2,  0){\sx{.3}{$-1$}}
\put(102.6,  0){\sx{.3}{$0$}}
\put( 122.7,  0){\sx{.3}{$1$}}
\put(142.7,  0){\sx{.3}{$2$}}
\put(162,  0.4){\sx{.3}{$x$}}
\put(5.5,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(25.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(45.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(65.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(85.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(105.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(8,42.3){\sx{.3}{$v\!=\!0$}}
\put(20,39){\sx{.3}{\rot{90}$u\!=\!0.7$\ero}}
\put(30.6,38.6){\sx{.3}{\rot{90}$u\!=\!0.7$\ero}}
\put(37.4,38.4){\sx{.3}{\rot{90}$u\!=\!0.8$\ero}}

\put(50,45.3){\sx{.3}{$v\!=\!-0.1$}}
\put(52,42.3){\sx{.3}{$v\!=\!0$}}
\put(52,39.3){\sx{.3}{$v\!=\!0.1$}}

%\put(68,44.3){\sx{.25}{$v\!=\!0.1$}}
\put(69,42.3){\sx{.3}{$v\!=\!0$}}
%\put(67,40.3){\sx{.25}{$v\!=\!-0.1$}}
\end{picture}}
\end{document}

References

  1. https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
  2. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
  3. https://link.springer.com/article/10.3103/S0027134910020049
    http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:13, 1 December 2018Thumbnail for version as of 06:13, 1 December 20182,357 × 1,571 (1,000 KB)Maintenance script (talk | contribs)Importing image file

There are no pages that use this file.

Metadata