Difference between revisions of "File:Logi5ab400.jpg"
($ -> \( ; refs ; pre ; keywords ; misprint) |
|||
| Line 1: | Line 1: | ||
| + | {{oq|Logi5ab400.jpg|Original file (2,357 × 1,571 pixels, file size: 1,000 KB, MIME type: image/jpeg) }} |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| + | \[ |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| + | \] |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| + | |||
| ⚫ | |||
[[Complex map]] at the bottom: |
[[Complex map]] at the bottom: |
||
| + | \[ |
||
| − | + | u\!+\!\mathrm i v=f(x\!+\!\mathrm i y) |
|
| + | \] |
||
| + | |||
| + | This map appears as Fig.7.15 at page 87 of book |
||
| + | «[[Superfunctions]]»<ref> |
||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28 |
||
| + | </ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | </ref> |
||
| + | <br> |
||
| + | in order to show that for the [[Holomorphic extension of the logistic sequence]] |
||
| + | <ref> |
||
| + | https://link.springer.com/article/10.3103/S0027134910020049 <br> |
||
| + | http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf |
||
| + | D.Kouznetsov. [[Holomorphic extension of the logistic sequence]]. [[Moscow University Physics Bulletin]], 2010, No.2, p.91-98. (Russian version: p.24-31) |
||
| + | </ref>, |
||
| + | the [[superfunction]]s constructed with the [[regular iteration]] |
||
| + | at different [[fixed point]]s are very different, |
||
| + | although they satisfy the same [[Transfer equation]] |
||
| + | |||
| + | \[ |
||
| + | F(z\!+\!1) = T(F(z)) |
||
| + | \] |
||
==[[C++]] generator of the graphic at the top== |
==[[C++]] generator of the graphic at the top== |
||
| − | Files |
+ | //Files |
[[ado.cin]], |
[[ado.cin]], |
||
[[logiu.cin]] |
[[logiu.cin]] |
||
should be loaded to the working directory in order to compile the code below |
should be loaded to the working directory in order to compile the code below |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 90: | Line 116: | ||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==[[C++]] generator of the map at the bottom== |
==[[C++]] generator of the map at the bottom== |
||
// Files [[ado.cin]], [[conto.cin]], [[logiu.cin]] should be loaded in order to compile the [[C++]] code below. |
// Files [[ado.cin]], [[conto.cin]], [[logiu.cin]] should be loaded in order to compile the [[C++]] code below. |
||
| + | <pre> |
||
| − | |||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 145: | Line 170: | ||
getchar(); system("killall Preview"); |
getchar(); system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==[[Latex]] generator of the labels== |
==[[Latex]] generator of the labels== |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\usepackage{geometry} |
\usepackage{geometry} |
||
| Line 215: | Line 240: | ||
\end{picture}} |
\end{picture}} |
||
\end{document} |
\end{document} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| − | |||
==References== |
==References== |
||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | |||
| + | «[[Holomorphic extension of the Logistic sequence]]», |
||
| + | «[[LogisitcOperator]]», |
||
| + | <b>«[[LogisticSequence]]»</b>, |
||
| + | «[[Regular iteration]]», |
||
| + | «[[Table of superfunctions]]», |
||
| + | «[[Transfer equation]]», |
||
| ⚫ | |||
| + | «[[Superfunctions]]», |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
[[Category:Book]] |
[[Category:Book]] |
||
| ⚫ | |||
[[Category:BookMap]] |
[[Category:BookMap]] |
||
| ⚫ | |||
[[Category:C++]] |
[[Category:C++]] |
||
| ⚫ | |||
| + | [[Category:Elutin Pavel Vyacheslavovich]] |
||
| ⚫ | |||
[[Category:Latex]] |
[[Category:Latex]] |
||
| ⚫ | |||
| + | [[Category:Logistic sequence]] |
||
| + | [[Category:Regular iteration]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
Latest revision as of 21:14, 21 August 2025
Superfunction \(f\) of the logistic operator
\[ T(z)= s\,z\,(1\!-\!z) \]
constructed with the regular iteration at the upper fixed point \(\ L\!=\!1-1/s\ \) for \(\ s\!=\!4 \)
Graphic at the top: explicit plot \(y\!=\!f(x)\)
Complex map at the bottom: \[ u\!+\!\mathrm i v=f(x\!+\!\mathrm i y) \]
This map appears as Fig.7.15 at page 87 of book
«Superfunctions»[1][2]
in order to show that for the Holomorphic extension of the logistic sequence
[3],
the superfunctions constructed with the regular iteration
at different fixed points are very different,
although they satisfy the same Transfer equation
\[ F(z\!+\!1) = T(F(z)) \]
C++ generator of the graphic at the top
//Files ado.cin, logiu.cin should be loaded to the working directory in order to compile the code below
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
//#include "efjh.cin"
//#include "u.cin"
#include "logiu.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=801,M1=M+1;
int N=401,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("logi5a4x.eps","w");ado(o,164,84);
fprintf(o,"102 42 translate\n 20 20 scale\n");
DO(m,M1) X[m]=-5.+.01*(m-.5);
DO(n,N1) Y[n]=-2.+.01*(n-.5);
for(m=-5;m<4;m++){if(m==0){M(m,-2.04)L(m,2.04)} else{M(m,-2)L(m,2)}}
for(n=-2;n<3;n++){ M( -5 ,n)L(3,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
maq(4.);
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=E(H(z))-1.;
// c=F(1.+E(0.1*z));
c=U(z);
// c=F(.5+E(z));
// c=boe(z);
// c=.5*(1.-cos(exp((z+1.)/LQ)));
// d=H(F(z-1.));
// p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.;
// if(p>-4.9 && p<20) g[m*N1+n]=p;
p=Re(c);q=Im(c);
if(p>-4.9 && p<4.9) {g[m*N1+n]=p;}
// if(q>-4.9 && q<4.9) {f[m*N1+n]=q;}
if(q>-4.9 && q<4.9 && fabs(q)>1.e-11 ) {f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
//p=.8;q=.4;
p=.8;q=.3;
//#include"plof.cin"
for(m=-3;m<3;m++)
for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".004 W 0 .6 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q);fprintf(o,".004 W .9 0 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".004 W 0 0 .9 RGB S\n");
for(m=1;m<6;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".016 W .9 0 0 RGB S\n");
for(m=1;m<6;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".016 W 0 0 .9 RGB S\n");
for(m=-4;m<6;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".016 W 0 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".016 W .6 0 .6 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi5a4x.eps"); // for linux
system( "open logi5a4x.pdf"); // for mac
getchar(); system("killall Preview");
}
C++ generator of the map at the bottom
// Files ado.cin, conto.cin, logiu.cin should be loaded in order to compile the C++ code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "conto.cin"
#include "ado.cin"
//#include "efjh.cin"
#include "logiu.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi5b4x.eps","w");ado(o,164,24);
fprintf(o,"102 2 translate\n 20 20 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
for(m=-5;m<4;m++){if(m==0){M(m,-.04)L(m,1.04)} else{M(m,0)L(m,1)}}
for(n=0;n<2;n++){ M( -5,n)L(3,n)}
fprintf(o,".006 W 0 0 0 RGB S\n");
M(-5,.75)L(3,.75)
fprintf(o,".004 W 0 0 0 RGB S\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
maq(4.);
DO(m,1034) { x=-5.08+8.*sqrt(.001*m); y=Re(U(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".01 W 0 .5 0 RGB S\n");
/*
maq(3.99);
DO(m,1001) { x=-5.+10.*sqrt(.001*m); y=Re(U(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");
maq(4.01);
DO(m,1001) { x=-5.+10.*sqrt(.001*m); y=Re(U(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 0 0 1 RGB [.01 .03] 0 setdash S\n");
*/
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi5b4x.eps");
system( "open logi5b4x.pdf");
getchar(); system("killall Preview");
}
Latex generator of the labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 426pt
\paperheight 284pt
\topmargin -108pt
\oddsidemargin -90pt
\newcommand \sx {\scalebox}
\newcommand \ing \includegraphics
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\sx{2.6}{\begin{picture}(140,23)
\put( 1, 1){\ing{logi5b4x}}
\put( 1, 21){\sx{.3}{$1$}}
\put( 1, 2){\sx{.3}{$0$}}
\put( 20.2, 0){\sx{.3}{$-4$}}
\put( 40.2, 0){\sx{.3}{$-3$}}
\put( 60.2, 0){\sx{.3}{$-2$}}
\put( 80.2, 0){\sx{.3}{$-1$}}
\put(102.6, 0){\sx{.3}{$0$}}
\put( 122.7, 0){\sx{.3}{$1$}}
\put(142.7, 0){\sx{.3}{$2$}}
\put(162, 0.4){\sx{.3}{$x$}}
\end{picture}}
%\sx{3.04}{\begin{picture}(140,85)
\sx{2.6}{\begin{picture}(140,85)
\put( 1, 1){\ing{logi5a4x}}
\put( 1, 81){\sx{.3}{$y$}}
\put( 1, 62){\sx{.3}{$1$}}
\put( 1, 42){\sx{.3}{$0$}}
\put( -1, 22){\sx{.3}{$-\!1$}}
%\put( -1, 2){\sx{.3}{$-\!2$}}
\put( 20.2, 0){\sx{.3}{$-4$}}
\put( 40.2, 0){\sx{.3}{$-3$}}
\put( 60.2, 0){\sx{.3}{$-2$}}
\put( 80.2, 0){\sx{.3}{$-1$}}
\put(102.6, 0){\sx{.3}{$0$}}
\put( 122.7, 0){\sx{.3}{$1$}}
\put(142.7, 0){\sx{.3}{$2$}}
\put(162, 0.4){\sx{.3}{$x$}}
\put(5.5,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(25.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(45.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(65.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(85.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(105.6,39.6){\sx{.3}{\rot{90}$v\!=\!0$\ero}}
\put(8,42.3){\sx{.3}{$v\!=\!0$}}
\put(20,39){\sx{.3}{\rot{90}$u\!=\!0.7$\ero}}
\put(30.6,38.6){\sx{.3}{\rot{90}$u\!=\!0.7$\ero}}
\put(37.4,38.4){\sx{.3}{\rot{90}$u\!=\!0.8$\ero}}
\put(50,45.3){\sx{.3}{$v\!=\!-0.1$}}
\put(52,42.3){\sx{.3}{$v\!=\!0$}}
\put(52,39.3){\sx{.3}{$v\!=\!0.1$}}
%\put(68,44.3){\sx{.25}{$v\!=\!0.1$}}
\put(69,42.3){\sx{.3}{$v\!=\!0$}}
%\put(67,40.3){\sx{.25}{$v\!=\!-0.1$}}
\end{picture}}
\end{document}
References
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
- ↑
https://link.springer.com/article/10.3103/S0027134910020049
http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:13, 1 December 2018 | 2,357 × 1,571 (1,000 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.