Difference between revisions of "File:Logi2s4t.jpg"

From TORI
Jump to navigation Jump to search
(misprint in the number of figure and the number of page)
(misprint in the number of figure and the number of page)
 
Line 17: Line 17:
 
</ref>.
 
</ref>.
   
This map is used as Fig.7.12
+
This map is used as Fig.7.11
at page 84 of book
+
at page 83 of book
 
«[[Superfunctions]]»<ref>
 
«[[Superfunctions]]»<ref>
 
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28
 
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28

Latest revision as of 20:56, 21 August 2025


Complex map of half iterate of the logistic operator with parameter \(s\!=\!4\),

\[ T(z)\!=\! s \,z \, (1\!-\!z) \]

\[ u\!+\!\mathrm i v= T^{1/2} (x\!+\!\mathrm i y) \]

The map is plotted after the request by Elutin Pavel Vyacheslavovich [1].

This map is used as Fig.7.11 at page 83 of book «Superfunctions»[2][3]
in order to show that the Holomorphic extension of the logistic sequence [4] is not so chaotic.

In the code below, the iterate half is implemented as follows:

\[ T^{1/2}(z)=F(0.5+E(z)) \]

Here \(F\) is the Superfunction and \(E=F^{-1}\) is the Abelfunction


C++ generator of map

ado.cin, conto.cin, efjh.cin should be loaded in order to compile the code below

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std:: complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "efjh.cin"
/*
z_type arccos(z_type z){ return -I*log(z+I*sqrt(1.-z*z)); }
z_type coe(z_type z){ return .5*(1.-cos(exp((z+1.)/LQ))); }
z_type boe(z_type z){ return LQ*log(arccos(1.-2.*z))-1.; }
z_type doe(z_type z){ return coe(1.+boe(z));; }
*/
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
  int M=201,M1=M+1;
  int N=401,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("Logi2s4.eps","w");ado(o,604,604);
fprintf(o,"302 302 translate\n 100 100 scale\n");
DO(m,M1) X[m]=-3.+.03*(m-.5);
DO(n,N1) Y[n]=-3.+.015*(n-.5);

for(m=-3;m<4;m++){if(m==0){M(m,-3.04)L(m,3.04)} else{M(m,-3)L(m,3)}}
for(n=-3;n<4;n++){         M(  -3  ,n)L(3,n)}
fprintf(o,"2 setlinecap .008 W 0 0 0 RGB S\n");

maq(4.);
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); 
//      c=E(H(z))-1.;
//      c=F(1.+E(0.1*z));
//      c=F(z);
        c=F(.5+E(z));
//      c=boe(z);
//      c=.5*(1.-cos(exp((z+1.)/LQ)));
//      d=H(F(z-1.));
//      p=abs(c-d)/(abs(c)+abs(d));  p=-log(p)/log(10.)-1.;
//      if(p>-4.9 && p<20) g[m*N1+n]=p;
        p=Re(c);q=Im(c);        
        if(p>-4.9 && p<4.9)     {g[m*N1+n]=p;}
//      if(q>-4.9 && q<4.9)     {f[m*N1+n]=q;}
        if(q>-4.9 && q<4.9 && fabs(q)>1.e-11 )  {f[m*N1+n]=q;}
                        }}

fprintf(o,"1 setlinejoin 2 setlinecap\n"); 
//p=.8;q=.4;
p=2.;q=.5;
//#include"plof.cin"
for(m=-2;m<2;m++) 
for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".005 W 0 .6 0 RGB S\n");
for(m=0;m<2;m++) 
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q);fprintf(o,".005 W .9 0 0 RGB S\n");
for(m=0;m<2;m++) 
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".005 W 0 0 .9 RGB S\n");

for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);   fprintf(o,".02 W .9 0 0 RGB S\n");
for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);   fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=-4;m<5;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p);   fprintf(o,".02 W 0 0 0 RGB S\n");

                  conto(o,f,w,v,X,Y,M,N, (0.  ),-p,p);   fprintf(o,".02 W .6 0 .6 RGB S\n");

fprintf(o,"0 setlinecap 0 setlinejoin 0 setlinecap\n");

//M(-3.02,0)L(0,0)  
//M(1.-1./Q,0)L(3,0)  fprintf(o,"0.03 W 1 1 1 RGB S\n");
M(1,0)L(3,0)  fprintf(o,"0.03 W 1 1 1 RGB S\n");
//for(n=0;n<16;n++) {M(-.2*n,0)L(-.2*(n+.4),0)}
for(n=0;n<10;n++) {     M(1+.2*(n+.4),0)
                        L(1+.2*(n+.8),0)}
fprintf(o,"0.04 W 0 0 0 RGB S\n");


fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
        system("epstopdf Logi2s4.eps"); // for linux
        system(    "xpdf Logi2s4.pdf"); // for Linux
//        system(    "open logi2s4.pdf"); // for mac
//        getchar(); system("killall Preview");
}

Latex generator of labels

\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 1280pt
\paperheight 1280pt
\textwidth 1300pt
\textheight 1300pt
%\paperwidth 640pt
%\paperheight 640pt
\topmargin -78pt
\oddsidemargin -96pt
\newcommand \sx {\scalebox}
\newcommand \ing \includegraphics
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}

\newcommand \axesS {
\normalsize
\put( 18,624){\sx{2.6}{$y$}}
\put( 18,530){\sx{2.6}{$2$}}
\put( 18,430){\sx{2.6}{$1$}}
\put( 18,330){\sx{2.6}{$0$}}
\put( -2,230){\sx{2.6}{$-1$}}
\put( -2,130){\sx{2.6}{$-2$}}
\put( -2, 30){\sx{2.6}{$-3$}}
\put( 16, 10){\sx{2.6}{$-3$}}
\put(116, 10){\sx{2.6}{$-2$}}
\put(216, 10){\sx{2.6}{$-1$}}
\put(332, 10){\sx{2.6}{$0$}}
\put(432, 10){\sx{2.6}{$1$}}
\put(532, 10){\sx{2.6}{$2$}}
\put(622, 10){\sx{2.6}{$x$}}
}
\sx{2}{\begin{picture}(640,628)
%\put( 4, 4){\ing{logi2b3}}
\put(36, 36){\ing{Logi2s4.pdf}}
\normalsize
\put( 62, 424){\rot{ 7}\sx{4}{$v\!=\!4$}\ero}
\put( 62, 326){\rot{ 0}\sx{4}{$v\!=\!0$}\ero}
\put( 42, 232){\rot{-9}\sx{4}{$v\!=\!-4$}\ero}
%
\put( 140, 42){\rot{71}\sx{4}{$u\!=\!-4$}\ero}
\put( 242, 44){\rot{66}\sx{4}{$u\!=\!0$}\ero}
\put( 294, 40){\rot{59}\sx{4}{$u\!=\!2$}\ero}
%
\put( 464, 512){\rot{ 48}\sx{4}{$v\!=\!2$}\ero}
\put( 504, 464){\rot{ 52}\sx{4}{$v\!=\!0$}\ero}
\put( 565, 444){\rot{ 57}\sx{4}{$v\!=\!-2$}\ero}
\axesS
\end{picture}}
\end{document}

References

  1. 2009.10.09. Елютин П. В. Думаю, задача, понятая как “КОНТИНУАЛЬНОЕ ОБОБЩЕНИЕ ЛОГИСТИЧЕСКОГО ОТОБРАЖЕНИЯ”, будет стоить Ваших усилий и времени, если удастся выявить модель, порождением которой является закон движения X(t) - или определить континуальные характеристики X(t) (например, границы значений производных по времени). Private communication, Oct 9, 2009 5:32 PM JST.
  2. https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
  3. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
  4. https://link.springer.com/article/10.3103/S0027134910020049
    http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:43, 21 August 2025Thumbnail for version as of 18:43, 21 August 20251,275 × 1,275 (631 KB)T (talk | contribs)misprint, extra "dash" at the real axis
06:13, 1 December 2018Thumbnail for version as of 06:13, 1 December 20181,328 × 1,328 (906 KB)Maintenance script (talk | contribs)Importing image file

There are no pages that use this file.