Difference between revisions of "File:Logi2d4t1500.jpg"
Jump to navigation
Jump to search
($ -> \( ; refs ; pre ; keywords ; misprint) |
|||
| Line 1: | Line 1: | ||
| + | {{oq|Logi2d4t1500.jpg|Original file (2,698 × 2,656 pixels, file size: 801 KB, MIME type: image/jpeg) }} |
||
| − | [[Complex map]] of the inverse of [[logistic sequence]] with parameter |
+ | [[Complex map]] of the inverse of [[logistic sequence]] with parameter \(s\!=\!4\) : |
| + | \[ |
||
| − | + | u+\mathrm i v= \mathrm{ArcLogisticSequence}_4(x\!+\!\mathrm i y) |
|
| + | \] |
||
| ⚫ | |||
| + | This map appears as Fig.7.8 at page 79 of book |
||
| − | <poem><nomathjax><nowiki> |
||
| + | «[[Superfunctions]]»<ref> |
||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28 |
||
| + | </ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | </ref> |
||
| + | <br> |
||
| + | in order to show that the [[Holomorphic extension of the logistic sequence]] |
||
| + | <ref> |
||
| + | https://link.springer.com/article/10.3103/S0027134910020049 <br> |
||
| ⚫ | |||
| ⚫ | |||
| + | </ref> |
||
| + | is not so chaotic. |
||
| ⚫ | |||
| + | <pre> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 91: | Line 107: | ||
getchar(); system("killall Preview"); |
getchar(); system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==[[Latex]] generator of labels== |
==[[Latex]] generator of labels== |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\usepackage{geometry} |
\usepackage{geometry} |
||
| Line 138: | Line 154: | ||
\end{picture} |
\end{picture} |
||
\end{document} |
\end{document} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==References== |
==References== |
||
| − | <references/> |
||
| + | {{ref}} |
||
| − | http://www.springerlink.com/content/u712vtp4122544x4/ <br> |
||
| ⚫ | |||
| ⚫ | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | |||
| + | «[[Holomorphic extension of the Logistic sequence]]», |
||
| + | «[[LogisitcOperator]]», |
||
| + | <b>«[[LogisticSequence]]»</b>, |
||
| + | «[[Table of superfunctions]]», |
||
| + | «[[Transfer equation]]», |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | |||
| + | [[Category:ArcLogisticSequence]] |
||
[[Category:Book]] |
[[Category:Book]] |
||
[[Category:BookMap]] |
[[Category:BookMap]] |
||
[[Category:C++]] |
[[Category:C++]] |
||
[[Category:Complex map]] |
[[Category:Complex map]] |
||
| − | [[Category: |
+ | [[Category:Elutin Pavel Vyacheslavovich]] |
[[Category:Latex]] |
[[Category:Latex]] |
||
| − | [[Category:Logistic |
+ | [[Category:Logistic operator]] |
| + | [[Category:Logistic sequence]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
Latest revision as of 16:28, 21 August 2025
Complex map of the inverse of logistic sequence with parameter \(s\!=\!4\) :
\[ u+\mathrm i v= \mathrm{ArcLogisticSequence}_4(x\!+\!\mathrm i y) \]
This map appears as Fig.7.8 at page 79 of book
«Superfunctions»[1][2]
in order to show that the Holomorphic extension of the logistic sequence
[3]
is not so chaotic.
C++ generator of map
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "efjh.cin"
/*
z_type arccos(z_type z){ return -I*log(z+I*sqrt(1.-z*z)); }
z_type coe(z_type z){ return .5*(1.-cos(exp((z+1.)/LQ))); }
z_type boe(z_type z){ return LQ*log(arccos(1.-2.*z))-1.; }
z_type doe(z_type z){ return coe(1.+boe(z));; }
*/
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=201,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("logi2d4.eps","w");ado(o,124,124);
fprintf(o,"62 62 translate\n 20 20 scale\n");
DO(m,M1) X[m]=-3.+.03*(m-.5);
DO(n,N1) Y[n]=-3.+.03*(n-.5);
for(m=-3;m<4;m++){if(m==0){M(m,-3.04)L(m,3.04)} else{M(m,-3)L(m,3)}}
for(n=-3;n<4;n++){ M( -3 ,n)L(3,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
maq(4.);
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=E(H(z))-1.;
// c=F(1.+E(0.1*z));
c=E(z);
// c=F(.5+E(z));
// c=boe(z);
// c=.5*(1.-cos(exp((z+1.)/LQ)));
// d=H(F(z-1.));
// p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.;
// if(p>-4.9 && p<20) g[m*N1+n]=p;
p=Re(c);q=Im(c);
if(p>-4.9 && p<4.9) {g[m*N1+n]=p;}
// if(q>-4.9 && q<4.9) {f[m*N1+n]=q;}
if(q>-4.9 && q<4.9 && fabs(q)>1.e-11 ) {f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n");
//p=.8;q=.4;
p=2.;q=.5;
//#include"plof.cin"
for(m=-3;m<3;m++)
for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".005 W 0 .6 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".005 W .9 0 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".005 W 0 0 .9 RGB S\n");
for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=-4;m<5;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .6 0 .6 RGB S\n");
fprintf(o,"0 setlinejoin 0 setlinecap\n");
M(-3.02,0)L(0,0)
//M(1.-1./Q,0)L(3,0)
M(1.,0)L(3,0)
fprintf(o,"0.03 W 1 1 1 RGB S\n");
for(n=0;n<16;n++) {M(-.2*n,0)L(-.2*(n+.4),0)}
for(n=0;n<12;n++) { M(1+.2* n,0)
L(1+.2*(n+.4),0)}
fprintf(o,"0.04 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi2d4.eps"); // for linux
system( "open logi2d4.pdf"); // for mac
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 130pt
\paperheight 128pt
\topmargin -102pt
\oddsidemargin -91pt
\newcommand \sx {\scalebox}
\newcommand \ing \includegraphics
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\newcommand \axes {
\normalsize
\put( 5,126){\sx{.6}{$y$}}
\put( 5,106.4){\sx{.6}{$2$}}
\put( 5, 86.4){\sx{.6}{$1$}}
\put( 5, 66.4){\sx{.6}{$0$}}
\put( 0, 46.4){\sx{.6}{$-1$}}
\put( 0, 26.4){\sx{.6}{$-2$}}
\put( 24, 2){\sx{.6}{$-2$}}
\put( 44, 2){\sx{.6}{$-1$}}
\put( 68.4, 2){\sx{.6}{$0$}}
\put( 89.2, 2){\sx{.6}{$1$}}
\put(109.2, 2){\sx{.6}{$2$}}
\put(126, 2){\sx{.6}{$x$}}
}
%\begin{picture}(122,122) \put( 4, 4){\ing{logi2c4a}}
\begin{picture}(122,122) \put( 8, 6){\ing{logi2d4}}
\put( 52, 88){\rot{0}\sx{.99}{$u\!=\!0$}\ero}
\put( 17,98){\rot{-36}\sx{.99}{$v\!=\!2$}\ero}
\put( 92, 90.2){\rot{-2}\sx{.99}{$v\!=\!1$}\ero}
\put( 91, 41){\rot{0}\sx{.99}{$v\!=\!-1$}\ero}
\put( 16, 30){\rot{36}\sx{.99}{$v\!=\!-2$}\ero}
{\put(12,66){\bf cut} }
{\put(109,66){\bf cut} }
\axes
\end{picture}
\end{document}
References
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
- ↑
https://link.springer.com/article/10.3103/S0027134910020049
http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:13, 1 December 2018 | 2,698 × 2,656 (801 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.