Difference between revisions of "File:Anka616map.jpg"

From TORI
Jump to navigation Jump to search
($ -> \( ; refs ; pre ; keywords)
 
Line 1: Line 1:
  +
{{oq|Anka616map.jpg|}}
  +
 
'''Anka616map.jpg''' is [[complex map]] of [[Anka function]]
 
'''Anka616map.jpg''' is [[complex map]] of [[Anka function]]
   
  +
\[
$\mathrm{Anka}(z)= \exp(\mathrm{ArcTania}(z))=\exp(z+\ln(z)-1)= \frac{1}{\mathrm e} \, z \exp(z)=\frac{1}{\mathrm e} \, \mathrm{zex}(z)$
+
\mathrm{Anka}(z)= \exp(\mathrm{ArcTania}(z))=\exp(z+\ln(z)-1)= \frac{1}{\mathrm e} \, z \exp(z)=\frac{1}{\mathrm e} \, \mathrm{zex}(z)
  +
\]
   
where [[zex]] is elementary functions, $\mathrm{zex}(z)=z\,\exp(z)$
+
where [[zex]] is elementary functions, \(\mathrm{zex}(z)=z\ \exp(z)\)
   
 
Anka appears as the [[Schroeder function]] for the transfer function [[Doya function|Doya]], and satisfies the [[Schroeder equation]]
 
Anka appears as the [[Schroeder function]] for the transfer function [[Doya function|Doya]], and satisfies the [[Schroeder equation]]
   
  +
\[
$\mathrm{Anka}(\mathrm{Doya}(z)) = \mathrm e \, \mathrm{Anka}(z)$
+
\mathrm{Anka}(\mathrm{Doya}(z)) = \mathrm e \, \mathrm{Anka}(z)
  +
\]
   
  +
==[[Superfunctions]]==
==Usage==
 
   
'''Anka616map.jpg''' is prepared to be used as figure 16.3 in book [[Superfunctions]]
+
'''Anka616map.jpg''' appears as Fig.6.5 at page 69 of book [[Superfunctions]]
 
<ref>
 
<ref>
  +
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
http://mizugadro.mydns.jp/BOOK/437.pdf
 
 
</ref><ref>
D.Kouznetsov. Superfunctions (2015)
 
  +
https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
</ref>.
 
  +
</ref><br>
 
  +
in order to show better the sense of the [[Schroederfunction]]s as analogies of
==References==
 
  +
[[Abelfunction]]s and
  +
[[Scalefunction]]s as analogies of
  +
[[Superfunction]]s.
   
<references/>
 
   
 
==[[C++]] generator of map==
 
==[[C++]] generator of map==
   
  +
<pre>
<poem><nomathjax><nowiki>
 
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 101: Line 109:
 
getchar(); system("killall Preview");
 
getchar(); system("killall Preview");
 
}
 
}
  +
</pre>
</nowiki></nomathjax></poem>
 
   
 
==[[Latex]] generator of labels==
 
==[[Latex]] generator of labels==
   
  +
<pre>
<poem><nomathjax><nowiki>
 
 
\documentclass[12pt]{article}
 
\documentclass[12pt]{article}
 
\paperwidth 1268px
 
\paperwidth 1268px
Line 191: Line 199:
 
\end{picture}}
 
\end{picture}}
 
\end{document}
 
\end{document}
  +
</pre>
</nowiki></nomathjax></poem>
 
 
==References==
  +
{{ref}}
  +
  +
{{fer}}
  +
==Keywords==
  +
«[[Abelfunction]]»,
  +
«[[Ernst Schroeder]]»,
  +
«[[Regular iteration]]»,
  +
«[[Scalefunction]]»,
  +
«[[Schroederfunction]]»,
  +
«[[Superfunctions]]»,
   
 
[[Category:Book]]
 
[[Category:Book]]

Latest revision as of 16:01, 20 August 2025


Anka616map.jpg is complex map of Anka function

\[ \mathrm{Anka}(z)= \exp(\mathrm{ArcTania}(z))=\exp(z+\ln(z)-1)= \frac{1}{\mathrm e} \, z \exp(z)=\frac{1}{\mathrm e} \, \mathrm{zex}(z) \]

where zex is elementary functions, \(\mathrm{zex}(z)=z\ \exp(z)\)

Anka appears as the Schroeder function for the transfer function Doya, and satisfies the Schroeder equation

\[ \mathrm{Anka}(\mathrm{Doya}(z)) = \mathrm e \, \mathrm{Anka}(z) \]

Superfunctions

Anka616map.jpg appears as Fig.6.5 at page 69 of book Superfunctions [1][2]
in order to show better the sense of the Schroederfunctions as analogies of Abelfunctions and Scalefunctions as analogies of Superfunctions.


C++ generator of map

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
z_type ArcTania(z_type z) {return z + log(z) - 1. ;}
z_type ArcTaniap(z_type z) {return 1. + 1./z ;}
z_type TaniaTay(z_type z) { int n; z_type s;
s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456.
//+z*(7.3/4128768.) //some reserve term
)))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.); 
DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaBig(z_type z){int n;z_type s=z; s=z-log(s)+1.; 
DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t);
s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.)
)))))));
DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type Tania(z_type z){ z_type t;
if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z);
if( abs(z)>7. || Re(z)>3.8 ) return TaniaBig(z);
if( Im(z) > .7 ) return TaniaS(z);
if( Im(z) < -.7) return conj(TaniaS(conj(z)));
return TaniaTay(z);
}

int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
 int M=520,M1=M+1;
 int N=601,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("taniacontour.eps","w");ado(o,1620,1620);
//FILE *o;o=fopen("23.eps","w");ado(o,1220,1220);
FILE *o;o=fopen("anka616ma.eps","w");ado(o,1220,1220);
fprintf(o,"610 610 translate\n 100 100 scale\n");
DO(m,M1) X[m]=-6.+.02*(m-.5);
DO(n,N1)Y[n]=-6.+.02*(n-.5);
for(m=-6;m<7;m++){if(m==0){M(m,-6.2)L(m,6.2)} else{M(m,-6)L(m,6)}}
for(n=-6;n<7;n++){     M(  -6,n)L(6,n)}
fprintf(o,".008 W 0 0 0 RGB 2 setlinecap S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); // z*=.1;        
        c=exp(ArcTania(z));
//      c=Tania(log(z)); 
        p=Re(c);q=Im(c);  
 if(p>-91. && p<91. &&  q>-91. && q<91. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
        }}
fprintf(o,"1 setlinejoin 2 setlinecap\n");  p=3;q=.5;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".008 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".008 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".008 W 0 0 .9 RGB S\n");
for(m=1;m<17;m++)  conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".03 W .9 0 0 RGB S\n");
for(m=1;m<17;m++)  conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".03 W 0 0 .9 RGB S\n");
                   conto(o,f,w,v,X,Y,M,N, (0.  ),-p,p); fprintf(o,".03 W .6 0 .6 RGB S\n");
for(m=-16;m<17;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n");
/*
y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
fprintf(o,".07 W 1 .5 0 RGB S\n");
y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
fprintf(o,".07 W 0 .5 1 RGB S\n");
*/
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
       system("epstopdf anka616ma.eps");    
       system(    "open anka616ma.pdf");
       getchar(); system("killall Preview");
}

Latex generator of labels

\documentclass[12pt]{article} 
\paperwidth 1268px 
\paperheight 1260px 
\textwidth 1794px 
\textheight 1700px 
\topmargin -98px 
\oddsidemargin -70px 
\usepackage{graphics} 
\usepackage{rotating} 
\newcommand \sx {\scalebox} 
\newcommand \rot {\begin{rotate}} 
\newcommand \ero {\end{rotate}} 
\newcommand \ing {\includegraphics} 
\newcommand \rmi {\mathrm{i}} 
\begin{document}  
\parindent 0pt 
\sx{1}{\begin{picture}(1252,1230) 
%\put(40,20){\ing{suzexD1map}} 
%\put(40,20){\ing{ZexD6map}} 
%\put(50,20){\ing{olgama}} 
\put(50,20){\ing{anka616ma}} 
\put(18,1210){\sx{5}{$y$}}
\put(22,1116){\sx{4.5}{$5$}}
\put(22,1016){\sx{4.5}{$4$}}
\put(22,916){\sx{4.5}{$3$}}
\put(22,816){\sx{4.5}{$2$}}
\put(22, 716){\sx{4.5}{$1$}}
\put(22, 616){\sx{4.5}{$0$}}
\put(-16, 516){\sx{4.5}{$-1$}}
\put(-16, 416){\sx{4.5}{$-2$}}
\put(-16, 316){\sx{4.5}{$-3$}}
\put(-16, 216){\sx{4.5}{$-4$}}
\put(-16, 116){\sx{4.5}{$-5$}}
\put(-16,  16){\sx{4.5}{$-6$}}
\put(18, -20){\sx{4.5}{$-6$}}
\put(118, -20){\sx{4.5}{$-5$}}
\put(218, -20){\sx{4.5}{$-4$}}
\put(318, -20){\sx{4.5}{$-3$}}
\put(418, -20){\sx{4.5}{$-2$}}
\put(518, -20){\sx{4.5}{$-1$}}
\put(650, -20){\sx{4.5}{$0$}}
\put(750, -20){\sx{4.5}{$1$}}
\put(850, -20){\sx{4.5}{$2$}}
\put(950, -20){\sx{4.5}{$3$}}
\put(1050, -20){\sx{4.5}{$4$}}
\put(1150, -20){\sx{4.5}{$5$}}
\put(1234, -20){\sx{5}{$x$}}
%\put(952, 1454){\sx{6}{\rot{75}$v\!=\!1$\ero}} 
%\put(914, 216){\sx{6}{\rot{-77}$v\!=\!-1$\ero}} 
\put(186,1180){\sx{5}{\rot{4}$u\!=\!0$\ero}} 
\put(184,1002){\sx{5}{\rot{5}$v\!=\!0$\ero}} 
\put(182,816){\sx{5}{\rot{3}$u\!=\!0$\ero}} 
\put(180, 616){\sx{5}{$v\!=\!0$}}  % \put(1200, 614){\sx{6}{$v\!=\!0$}}
\put(180, 422){\sx{5}{\rot{-6}$u\!=\!0$\ero}} 
\put(180, 232){\sx{5}{\rot{-6}$v\!=\!0$\ero}} 
\put(180, 56){\sx{5}{\rot{-6}$u\!=\!0$\ero}} 
%
\put(564, 640){\sx{5}{\rot{59}$v\!=\!0$\ero}}
\put(652, 630){\sx{5}{\rot{38}$u\!=\!0$\ero}}
\put(752, 610){\sx{5}{\rot{52}$u\!=\!1$\ero}}
%
%
\put(1066, 899){\sx{5}{\rot{2}$v\!=\!16$\ero}}
\put(1066, 858){\sx{5}{\rot{3}$u\!=\!-16$\ero}}
%
\put(1066, 776){\sx{5}{\rot{1}$u\!=\!-16$\ero}}
\put(1066, 726){\sx{5}{\rot{2}$u\!=\!16$\ero}}
%
\put(1066, 648){\sx{5}{\rot{-1}$v\!=\!16$\ero}}%
\put(1066, 590){\sx{5}{\rot{1}$v\!=\!-16$\ero}}%
%
\put(1066, 518){\sx{5}{\rot{-1}$u\!=\!16$\ero}}
\put(1066, 470){\sx{5}{\rot{0}$u\!=\!-16$\ero}}
%
\put(1060, 390){\sx{5}{\rot{-3}$v\!=\!-16$\ero}}
\put(1060, 338){\sx{5}{\rot{-1}$v\!=\!16$\ero}}
%
\put(1040, 256){\sx{5}{\rot{-4}$u\!=\!-16$\ero}}
\put(1040, 200){\sx{5}{\rot{-2}$u\!=\!16$\ero}}
%
\put(1030, 106){\sx{5}{\rot{-5}$v\!=\!16$\ero}}
\put(1030, 60){\sx{5}{\rot{-3}$v\!=\!-16$\ero}}

\end{picture}} 
\end{document} 

References

  1. https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
  2. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:10, 1 December 2018Thumbnail for version as of 06:10, 1 December 20182,641 × 2,625 (1.48 MB)Maintenance script (talk | contribs)Importing image file

There are no pages that use this file.

Metadata