Difference between revisions of "File:EncPlot100.png"
Jump to navigation
Jump to search
| Line 1: | Line 1: | ||
| + | [[Explicit plot]] of function [[Enc]]: |
||
| + | |||
| + | \( \displaystyle |
||
| + | y = \mathrm{Enc}(n,x) \) |
||
| + | \( \displaystyle |
||
| + | = \left(\frac{\mathrm e^x\!-\!1}{x}\right)^{\!n}-1 |
||
| + | \) |
||
| + | |||
| + | versus \(x\) for |
||
| + | \(n=1\), |
||
| + | \(n=2\), |
||
| + | \(n=3\) and |
||
| + | \(n=4\). |
||
| + | |||
| + | For comparison, the thin line shows \( y=\mathrm e^x \). |
||
| + | ==Requirements== |
||
| + | For generation of the image, file [[ado.cin]] should be loaded. |
||
| + | Then, one by one, the two files below can be compiled. |
||
| + | |||
| + | ==<b>EncP.cc</b>== |
||
| + | <pre> |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | #include <complex> |
||
| + | typedef std::complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "ado.cin" |
||
| + | |||
| + | int main(){ int j,k,m,n; DB f,x,y, p,q, t,r; //z_type z,c,d; |
||
| + | FILE *o;o=fopen("encP.eps","w");ado(o,808,1308); |
||
| + | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n", 0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n", 0.+x,0.+y); |
||
| + | fprintf(o,"404 104 translate\n 100 100 scale 2 setlinecap\n"); |
||
| + | for(m=-4;m<5;m++){M(m,-1)L(m,12)} |
||
| + | for(n=-1;n<13;n++){M( -4,n)L(4,n)} |
||
| + | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
| + | |||
| + | for(n=0;n<161;n++){x=-4.05+.1*n; y=exp(x); ;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".007 W 0 0 0 RGB S\n"); |
||
| + | for(n=0;n<161;n++){x=-4.05+.1*n; f=(exp(x)-1.)/x; y=f-1. ;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".02 W 0 0 0 RGB S\n"); |
||
| + | for(n=0;n<161;n++){x=-4.05+.1*n; f=(exp(x)-1.)/x; y=f*f-1. ;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".02 W .9 0 0 RGB S\n"); |
||
| + | for(n=0;n<161;n++){x=-4.05+.1*n; f=(exp(x)-1.)/x; y=f*f*f-1. ;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".02 W 0 .8 0 RGB S\n"); |
||
| + | for(n=0;n<261;n++){x=-4.05+.1*n; f=(exp(x)-1.)/x; y=f*f*f*f-1.;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".02 W 0 0 .9 RGB S\n"); |
||
| + | |||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf encP.eps"); |
||
| + | system( "xpdf encP.pdf"); |
||
| + | } |
||
| + | </pre> |
||
| + | |||
| + | ==<b>EncPlot.tex</b>== |
||
| + | <pre> |
||
| + | \documentclass[12pt]{article} |
||
| + | \usepackage{geometry} |
||
| + | \paperwidth 810pt |
||
| + | \paperheight 1210pt |
||
| + | \textheight 2000pt |
||
| + | \usepackage{graphicx} |
||
| + | \newcommand \sx {\scalebox} |
||
| + | \newcommand \ing {\includegraphics} |
||
| + | \usepackage{rotating} |
||
| + | \newcommand \rot {\begin{rotate}} |
||
| + | \newcommand \ero {\end{rotate}} |
||
| + | \topmargin -108pt |
||
| + | \oddsidemargin -72pt |
||
| + | \parindent 0pt |
||
| + | \begin{document} |
||
| + | \begin{picture}(602,1210) |
||
| + | \put(0,0){\ing{encP.pdf}} |
||
| + | \put(380,1187){\sx{4.1}{$y$}} |
||
| + | %\put(358,1192){\sx{4}{$11$}} |
||
| + | \put(358,1092){\sx{4}{$10$}} |
||
| + | \put(380,992){\sx{4}{$9$}} |
||
| + | \put(380,892){\sx{4}{$8$}} |
||
| + | \put(380,792){\sx{4}{$7$}} |
||
| + | \put(380,692){\sx{4}{$6$}} |
||
| + | \put(380,592){\sx{4}{$5$}} |
||
| + | \put(380,492){\sx{4}{$4$}} |
||
| + | \put(380,392){\sx{4}{$3$}} |
||
| + | \put(380,292){\sx{4}{$2$}} |
||
| + | \put(380,192){\sx{4}{$1$}} |
||
| + | %\put(368,92){\sx{4}{$0$}} |
||
| + | \put(62,66){\sx{4}{$-3$}} |
||
| + | \put(163,66){\sx{4}{$-2$}} |
||
| + | \put(264,66){\sx{4}{$-1$}} |
||
| + | \put(395,66){\sx{4}{$0$}} |
||
| + | \put(494,68){\sx{4}{$1$}} |
||
| + | \put(595,68){\sx{4}{$2$}} |
||
| + | \put(696,66){\sx{4}{$3$}} |
||
| + | \put(782,68){\sx{4.1}{$x$}} |
||
| + | |||
| + | \put(527,1108){\rot{87}\sx{4}{$n\!=\!4$}\ero} |
||
| + | \put(562,1108){\rot{86}\sx{4}{$n\!=\!3$}\ero} |
||
| + | \put(624,1108){\rot{85}\sx{4}{$n\!=\!2$}\ero} |
||
| + | \put(640,880){\rot{82}\sx{3.8}{$y\!=\!\exp(x)$}\ero} |
||
| + | \put(793,1108){\rot{83}\sx{4}{$n\!=\!1$}\ero} |
||
| + | |||
| + | \put(140,122){\rot{1}\sx{3.8}{$y\!=\!\mathrm e^x$}\ero} |
||
| + | |||
| + | \end{picture} |
||
| + | \end{document} |
||
| + | </pre> |
||
| + | |||
| + | ==Generation== |
||
| + | <pre> |
||
| + | male EncP |
||
| + | ./EncP |
||
| + | pdflatex EncPlot.tex |
||
| + | convert -density 100 EncPlot.pdf PNG8:EncPlot100.png |
||
| + | </pre> |
||
| + | |||
| + | ==References== |
||
| + | <references/> |
||
| + | |||
| + | [[Abelfunction]] |
||
| + | [[Ackermann]] |
||
| + | [[ArkKneser]] |
||
| + | [[Category:Book]] |
||
| + | [[Category:BookPlot]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Convert]] |
||
| + | [[Category:Elementary function]] |
||
| + | [[Category:Explicit plot]] |
||
| + | [[Category:Latex]] |
||
| + | [[Category:PNG8]] |
||
| + | [[Category:Superfunctions]] |
||
Revision as of 12:51, 19 August 2020
Explicit plot of function Enc:
\( \displaystyle y = \mathrm{Enc}(n,x) \) \( \displaystyle = \left(\frac{\mathrm e^x\!-\!1}{x}\right)^{\!n}-1 \)
versus \(x\) for \(n=1\), \(n=2\), \(n=3\) and \(n=4\).
For comparison, the thin line shows \( y=\mathrm e^x \).
Requirements
For generation of the image, file ado.cin should be loaded. Then, one by one, the two files below can be compiled.
EncP.cc
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
int main(){ int j,k,m,n; DB f,x,y, p,q, t,r; //z_type z,c,d;
FILE *o;o=fopen("encP.eps","w");ado(o,808,1308);
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n", 0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n", 0.+x,0.+y);
fprintf(o,"404 104 translate\n 100 100 scale 2 setlinecap\n");
for(m=-4;m<5;m++){M(m,-1)L(m,12)}
for(n=-1;n<13;n++){M( -4,n)L(4,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
for(n=0;n<161;n++){x=-4.05+.1*n; y=exp(x); ;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".007 W 0 0 0 RGB S\n");
for(n=0;n<161;n++){x=-4.05+.1*n; f=(exp(x)-1.)/x; y=f-1. ;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".02 W 0 0 0 RGB S\n");
for(n=0;n<161;n++){x=-4.05+.1*n; f=(exp(x)-1.)/x; y=f*f-1. ;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".02 W .9 0 0 RGB S\n");
for(n=0;n<161;n++){x=-4.05+.1*n; f=(exp(x)-1.)/x; y=f*f*f-1. ;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".02 W 0 .8 0 RGB S\n");
for(n=0;n<261;n++){x=-4.05+.1*n; f=(exp(x)-1.)/x; y=f*f*f*f-1.;if(n==0)M(x,y) else L(x,y) if(y>12.) break;} fprintf(o,".02 W 0 0 .9 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf encP.eps");
system( "xpdf encP.pdf");
}
EncPlot.tex
\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 810pt
\paperheight 1210pt
\textheight 2000pt
\usepackage{graphicx}
\newcommand \sx {\scalebox}
\newcommand \ing {\includegraphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\topmargin -108pt
\oddsidemargin -72pt
\parindent 0pt
\begin{document}
\begin{picture}(602,1210)
\put(0,0){\ing{encP.pdf}}
\put(380,1187){\sx{4.1}{$y$}}
%\put(358,1192){\sx{4}{$11$}}
\put(358,1092){\sx{4}{$10$}}
\put(380,992){\sx{4}{$9$}}
\put(380,892){\sx{4}{$8$}}
\put(380,792){\sx{4}{$7$}}
\put(380,692){\sx{4}{$6$}}
\put(380,592){\sx{4}{$5$}}
\put(380,492){\sx{4}{$4$}}
\put(380,392){\sx{4}{$3$}}
\put(380,292){\sx{4}{$2$}}
\put(380,192){\sx{4}{$1$}}
%\put(368,92){\sx{4}{$0$}}
\put(62,66){\sx{4}{$-3$}}
\put(163,66){\sx{4}{$-2$}}
\put(264,66){\sx{4}{$-1$}}
\put(395,66){\sx{4}{$0$}}
\put(494,68){\sx{4}{$1$}}
\put(595,68){\sx{4}{$2$}}
\put(696,66){\sx{4}{$3$}}
\put(782,68){\sx{4.1}{$x$}}
\put(527,1108){\rot{87}\sx{4}{$n\!=\!4$}\ero}
\put(562,1108){\rot{86}\sx{4}{$n\!=\!3$}\ero}
\put(624,1108){\rot{85}\sx{4}{$n\!=\!2$}\ero}
\put(640,880){\rot{82}\sx{3.8}{$y\!=\!\exp(x)$}\ero}
\put(793,1108){\rot{83}\sx{4}{$n\!=\!1$}\ero}
\put(140,122){\rot{1}\sx{3.8}{$y\!=\!\mathrm e^x$}\ero}
\end{picture}
\end{document}
Generation
male EncP ./EncP pdflatex EncPlot.tex convert -density 100 EncPlot.pdf PNG8:EncPlot100.png
References
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 12:50, 19 August 2020 | 1,121 × 1,674 (40 KB) | T (talk | contribs) |
You cannot overwrite this file.
File usage
There are no pages that use this file.