Difference between revisions of "File:Logi2qt.jpg"
(misprint in the number of figure and the number of page) |
|||
| Line 17: | Line 17: | ||
in the \(x,y\) plane. |
in the \(x,y\) plane. |
||
| − | This map appears as Fig.7. |
+ | This map appears as Fig.7.13 at page 85 of book |
«[[Superfunctions]]»<ref> |
«[[Superfunctions]]»<ref> |
||
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28 |
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28 |
||
Latest revision as of 20:52, 21 August 2025
Fig. 7.13 from book Superfunctions.
Complex map of function \( T \) defined with
\( T(z)=-1.8\,(-z)^{\sqrt{2}} \)
The map is constructed with lines
\( u= \Re(T(x+\mathrm i y ))= \rm const \)
and lines
\( v= \Im(T(x+\mathrm i y ))= \rm const \)
in the \(x,y\) plane.
This map appears as Fig.7.13 at page 85 of book
«Superfunctions»[1][2]
in order to compare it to the maps of the iterate half
of the Logistic operator
[3].
C++ generator of map
//You need to load ado.cin and conto.cin in order to compile the code below.
//#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
//#include "efjh.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=101,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("logi2b3.eps","w");ado(o,124,124);
FILE *o;o=fopen("logi2q.eps","w");ado(o,124,124);
fprintf(o,"62 62 translate\n 20 20 scale\n");
DO(m,M1) X[m]=-3.+.06*(m-.5);
DO(n,N1) Y[n]=-3.+.03*(n-.5);
for(m=-3;m<4;m++){if(m==0){M(m,-3.04)L(m,3.04)} else{M(m,-3)L(m,3)}}
for(n=-3;n<4;n++){ M( -3 ,n)L(3,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
// maq(3.);
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=F(.5+E(z));
c=-1.8*exp(sqrt(2.)*log(-z));
p=Re(c);q=Im(c);
if(p>-4.9 && p<4.9) {g[m*N1+n]=p;}
if(q>-4.9 && q<4.9 && fabs(q)>1.e-11 ) {f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
//p=.8;q=.4;
p=2.;q=.5;
//#include"plof.cin"
for(m=-2;m<2;m++)
for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".005 W 0 .6 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q);fprintf(o,".005 W .9 0 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q);fprintf(o,".005 W 0 0 .9 RGB S\n");
for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=-4;m<5;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .6 0 .6 RGB S\n");
fprintf(o,"0 setlinejoin 0 setlinecap\n");
//M(-3.02,0)L(0,0)
//M(1.-1./Q,0)L(3,0) fprintf(o,"0.03 W 1 1 1 RGB S\n");
M(0,0)L(3,0) fprintf(o,"0.03 W 1 1 1 RGB S\n");
//for(n=0;n<16;n++) {M(-.2*n+.4,0)L(-.2*(n+.8),0)}
for(n=0;n<15;n++) { M(.2*(n+.4),0)
L(.2*(n+.8),0)}
fprintf(o,"0.04 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi2q.eps"); // both linux and mac
system( "xpdf logi2q.pdf"); // for linux
// system( "open logi2q.pdf"); // for mac
// getchar(); system("killall Preview"); for mac
}
//
Latex generator of labels
% file logi2q.jpg should be generated with the C++ code above in order to latex the code below:
%\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 640pt
\paperheight 640pt
\textwidth 700pt
\textheight 700pt
\topmargin -92pt
\oddsidemargin -91pt
\newcommand \sx {\scalebox}
\newcommand \ing \includegraphics
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\newcommand \axesS {
\normalsize
\put( 18,624){\sx{2.6}{$y$}}
\put( 18,530){\sx{2.6}{$2$}}
\put( 18,430){\sx{2.6}{$1$}}
\put( 18,330){\sx{2.6}{$0$}}
\put( -2,230){\sx{2.6}{$-1$}}
\put( -2,130){\sx{2.6}{$-2$}}
\put( -2, 30){\sx{2.6}{$-3$}}
\put( 16, 10){\sx{2.6}{$-3$}}
\put(116, 10){\sx{2.6}{$-2$}}
\put(216, 10){\sx{2.6}{$-1$}}
\put(332, 10){\sx{2.6}{$0$}}
\put(432, 10){\sx{2.6}{$1$}}
\put(532, 10){\sx{2.6}{$2$}}
\put(622, 10){\sx{2.6}{$x$}}
}
\begin{picture}(640,628)
%\put( 4, 4){\ing{logi2b3}}
%\put(36, 36){\ing{logi2s5}}
%\put(36, 36){\ing{logi2q}}
\put(28, 28){\sx{5}{\ing{logi2q}}}
\normalsize
\put( 52, 430){\rot{ 8}\sx{4}{$v\!=\!4$}\ero}
\put( 60, 326){\rot{ 0}\sx{4}{$v\!=\!0$}\ero}
\put( 566, 328){\rot{ 0}\sx{4}{\bf cut}\ero}
%\put( 42, 232){\rot{-9}\sx{4}{$v\!=\!-4$}\ero}
%
\put( 86, 42){\rot{71}\sx{4}{$u\!=\!-4$}\ero}
\put( 128, 42){\rot{68}\sx{4}{$u\!=\!-3$}\ero}
\put( 208, 44){\rot{64}\sx{4}{$u\!=\!0$}\ero}
\put( 288, 39){\rot{56}\sx{4}{$u\!=\!3$}\ero}
%
\put( 430, 532){\rot{ 48}\sx{4}{$v\!=\!2$}\ero}
\put( 468, 488){\rot{ 52}\sx{4}{$v\!=\!0$}\ero}
\put( 514, 454){\rot{ 56}\sx{4}{$v\!=\!-2$}\ero}%%
\put( 564, 424){\rot{ 60}\sx{4}{$v\!=\!-4$}\ero}
\put( 564, 204){\rot{-60}\sx{4}{$v\!=\!4$}\ero}
\put( 524, 170){\rot{-58}\sx{4}{$v\!=\!2$}\ero}
\put( 470, 150){\rot{-54}\sx{4}{$v\!=\!0$}\ero}
\put( 410, 132){\rot{-50}\sx{4}{$v\!=\!-2$}\ero}
\axesS
\end{picture}
\end{document}
%
References
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
- ↑
https://link.springer.com/article/10.3103/S0027134910020049
http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)
Keywords
«Holomorphic extension of the Logistic sequence», «LogisitcOperator», «LogisticSequence»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:13, 1 December 2018 | 1,328 × 1,328 (955 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.