Difference between revisions of "File:QQFacMT.jpg"

From TORI
Jump to navigation Jump to search
m (misprint in the range of validity)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
  +
{{oq|QQFacMT.jpg|Original file ‎(885 × 868 pixels, file size: 437 KB, MIME type: image/jpeg) }}
Something strange with names..
 
   
[[Complex map]] of function $H(z)=h(h(z))$,
+
[[Complex map]] of function \(H(z)=h(h(z))\),
which is second iterate of the half iterate of factorial.
+
which is second iterate of the half iterate of [[factorial]].
   
The half iterate is evaluatef through functions [[SuFac]] and [[AuFac]]:
+
The half iterate is evaluated through functions [[SuFac]] and [[AuFac]]:
   
  +
\[
$\displaystyle
 
 
h(z)=\mathrm{Factorial}^{0.5}(z)=\mathrm{SuFac}\left( \frac{1}{2}+\mathrm{AuFac}(z)\right)
 
h(z)=\mathrm{Factorial}^{0.5}(z)=\mathrm{SuFac}\left( \frac{1}{2}+\mathrm{AuFac}(z)\right)
  +
\]
$
 
   
  +
These functions are described in the [[Moscow University Physics Bulletin]], 2010
The map is show with lines of constant $u$ and lines of constant $v$;
 
  +
<ref>
  +
http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1<br>
  +
http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf English version<br>
  +
http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf Russian version<br>
  +
D.Kouznetsov, H.Trappmann. Superfunctions and [[square root of factorial]]. [[Moscow University Physics Bulletin]], 2010, v.65, No.1, p.6-12. (Russian version: p.8-14)
  +
</ref>
   
  +
The map is shown with lines of constant \(u\) and lines of constant \(v\);
$u+\mathrm i v=H(x+\mathrm i u)$
 
   
  +
\[
In the right hand side of the map, it coincides with map of [[Factorial]].
 
  +
u+\mathrm i v=H(x+\mathrm i u)
The image represents figure 8.10 from the Russian version of the Book [[Суперфункции]]
 
  +
\]
  +
  +
In the right hand side of the map, the map coincides with [[complex map]] of [[Factorial]].
  +
  +
The image represents figure 8.10 from the Russian version «[[Суперфункции]]» of the Book
  +
about [[Superfunctions]], 2014
 
<ref>
 
<ref>
  +
https://mizugadro.mydns.jp/BOOK/202.pdf
 
Д.Кузнецов. [[Суперфункции]]. Lambert Academic Publishing, 2014.
 
Д.Кузнецов. [[Суперфункции]]. Lambert Academic Publishing, 2014.
 
</ref>
 
</ref>
  +
  +
This map is used as
  +
Fig.8.11 at page 102 of the English version «[[Superfunctions]]», 2020
  +
<ref name="bookA">
  +
https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - [[Lambert Academic Publishing]], 2020/7/28
  +
</ref><ref name="bookM">https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]].
  +
</ref><br>
  +
in order to show the range of validity of relation
  +
  +
\[
  +
h(h(z))=z!
  +
\]
  +
  +
In particular this relation holds in the range
  +
  +
\[
  +
\Re(z)\!>\!1\ ,\ |\Im(z)|\!<\!4
  +
\]
   
 
==[[C++]] generator of map==
 
==[[C++]] generator of map==
 
Files
 
Files
[[fac.cin]]
 
[[facp.cin]]
 
[[afacc.cin]]
 
[[superfactorial.cin]]
 
 
[[abelfac.cin]]
 
[[abelfac.cin]]
[[conto.cin]]
+
[[ado.cin]],
  +
[[afacc.cin]],
should be loaded in order to compile the code below
 
  +
[[conto.cin]],
 
  +
[[fac.cin]],
//<poem><nomathjax><nowiki>
 
  +
[[facp.cin]],
 
  +
[[superfac.cin]],
  +
should be loaded in order to compile the code below.
  +
//<pre>
 
#include <math.h>
 
#include <math.h>
 
#include <stdio.h>
 
#include <stdio.h>
Line 104: Line 134:
 
// getchar(); system("killall Preview");//for mac
 
// getchar(); system("killall Preview");//for mac
 
}
 
}
  +
//</pre>
//</nowiki></nomathjax></poem>
 
   
 
==[[Latex]] generator of labels==
 
==[[Latex]] generator of labels==
  +
%<pre>
%<poem><nomathjax><nowiki>
 
 
 
\documentclass[12pt,a4paper,oneside]{book}
 
\documentclass[12pt,a4paper,oneside]{book}
 
%\newcommand \EN[1] {{#1}} % make the English version
 
%\newcommand \EN[1] {{#1}} % make the English version
Line 207: Line 236:
 
\end{picture}}}
 
\end{picture}}}
 
\end{document}
 
\end{document}
  +
%</pre>
   
  +
==Warning==
  +
The code is extracted from the Book "as is".
  +
It can be significantly shortened producing the same picture.
   
  +
==References==
%JP{
 
  +
{{ref}}
\color{red}
 
\begin{picture}(425,729.88)
 
\put(0,0){\rule{1pt}{729.88pt}}
 
\put(425,0){\rule{1pt}{729.88pt}}
 
\put(0,0){\rule{426pt}{1pt}}
 
\put(0,728.88){\rule{426pt}{1pt}}
 
\end{picture}
 
%\vskip -740pt
 
\vskip -729pt
 
\color{black}
 
%}
 
\end{document}
 
   
  +
{{fer}}
%</nowiki></nomathjax></poem>
 
  +
==Keywords==
   
  +
<b>«[[Abelfactorial]]»</b>,
==References==
 
  +
«[[Abelfunction]]»,
<references/>
 
  +
<b>«[[AuFac]]»</b>,
  +
<b>«[[Factorial]]»</b>,
  +
«[[Iterate]]»,
  +
«[[Regular iteration]]»,
  +
</b>«[[SuFac]]»</b>,
  +
«[[Superfactorial]]»,
  +
«[[Superfunction]]»,
  +
«[[Superfunctions]]»,
  +
<b>«[[Square root of factorial]]»</b>,
   
  +
<b>«[[Корень из факториала]]»</b>,
[[Category:Factorial]]
 
  +
«[[Суперфункции]]»,
[[Category:SuFac]]
 
  +
[[Category:AuFac]]
 
[[Category:Superfunction]]
+
[[Category:AbelFactorial]]
 
[[Category:Abelfunction]]
 
[[Category:Abelfunction]]
[[Category:Square root of factorial]]
+
[[Category:AuFac]]
[[Category:Halfiterate of factorial]]
 
 
[[Category:Book]]
 
[[Category:Book]]
[[Category:BookMap]]
+
[[Category:Bookmap]]
  +
[[Category:Complex map]]
  +
[[Category:Factorial]]
  +
[[Category:Halfiterate of factorial]]
  +
[[Category:Iterate]]
  +
[[Category:Superfactorial]]
 
[[Category:C++]]
 
[[Category:C++]]
 
[[Category:Latex]]
 
[[Category:Latex]]
  +
[[Category:SuFac]]
  +
[[Category:Superfunction]]
  +
[[Category:Superfunctions]]
  +
[[Category:Square root of factorial]]
  +
[[Category:Test]]

Latest revision as of 10:01, 9 October 2025


Complex map of function \(H(z)=h(h(z))\), which is second iterate of the half iterate of factorial.

The half iterate is evaluated through functions SuFac and AuFac:

\[ h(z)=\mathrm{Factorial}^{0.5}(z)=\mathrm{SuFac}\left( \frac{1}{2}+\mathrm{AuFac}(z)\right) \]

These functions are described in the Moscow University Physics Bulletin, 2010 [1]

The map is shown with lines of constant \(u\) and lines of constant \(v\);

\[ u+\mathrm i v=H(x+\mathrm i u) \]

In the right hand side of the map, the map coincides with complex map of Factorial.

The image represents figure 8.10 from the Russian version «Суперфункции» of the Book about Superfunctions, 2014 [2]

This map is used as Fig.8.11 at page 102 of the English version «Superfunctions», 2020 [3][4]
in order to show the range of validity of relation

\[ h(h(z))=z! \]

In particular this relation holds in the range

\[ \Re(z)\!>\!1\ ,\ |\Im(z)|\!<\!4 \]

C++ generator of map

Files abelfac.cin ado.cin, afacc.cin, conto.cin, fac.cin, facp.cin, superfac.cin, should be loaded in order to compile the code below.

//
 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #define DB double
 #define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
 #include <complex>
 typedef std::complex<double> z_type;
 #define Re(x) x.real()
 #define Im(x) x.imag()
 #define I z_type(0.,1.)
 #include "fac.cin"
 //#include "sinc.cin"
 #include "facp.cin"
 #include "afacc.cin"
 #include "superfactorial.cin"
 #include "abelfac.cin"
 #include "conto.cin"

int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
   int M=401,M1=M+1;
   int N=401,N1=N+1;
 DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
 char v[M1*N1]; // v is working array
 FILE *o;o=fopen("QQFacMap.eps","w");ado(o,402,402);
 fprintf(o,"201 201 translate\n 20 20 scale\n");
 DO(m,M1)X[m]=-8.04+.04*(m+.5);
 // DO(m,M1){t=-1.+.022*m; X[m]=.2+t-1.11*exp(-1.9*t);}
 DO(n,N1)Y[n]=-8.04+.04*(n+.5);
 // DO(n,N1){t=-8.04+.04*(n+.5); t*=.97; Y[n]=t-.25*sin(0.6127874523307*t);}
 for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}}
 for(n=-8;n<9;n++){     M(  -8,n)L(8,n)}
 fprintf(o,".008 W 0 0 0 RGB S\n");
 DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
 DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
 DO(n,N1){y=Y[n]; z=z_type(x,y);         
 //     c=afacc(z);
 //     c=fac(z);
        c=abelfac(z);   c=superfac(.5+c);
        c=abelfac(c);   c=superfac(.5+c);
 //     p=abs(c-d)/(abs(c)+abs(d));  p=-log(p)/log(10.)-1.;
        p=Re(c);q=Im(c);        
        if(p>-60 && p<60 &&
 //       (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) &&
           q>-60 && q<60 && fabs(q)> 1.e-16
        ) 
        {g[m*N1+n]=p;f[m*N1+n]=q;}
                        }}
 //fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7;
 fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.4;q=.8;
 for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .5 0 RGB S\n");
 for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .8 0 0 RGB S\n");
 for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .8 RGB S\n");
 for(m=1;m<9;m++)  conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".04 W .8 0 0 RGB S\n");
 for(m=1;m<9;m++)  conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 .8 RGB S\n");
                  conto(o,f,w,v,X,Y,M,N, (0.  ),-9,9); fprintf(o,".04 W .5 0 .5 RGB S\n");
 for(m=-8;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n");
           m=0;     conto(o,g,w,v,X,Y,M,N, (0.+m),-9,9); fprintf(o,".04 W 0 0 0 RGB S\n");
 for(m=1;m<9;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n");
 //#include"plofu.cin"
 // x=0.8856031944;
 // conto(o,g,w,v,X,Y,M,N,0.8856031944,-p,p); fprintf(o,".004 W .2 .2 0 RGB S\n");
 M(1,0)L(-8.1,0) fprintf(o,"0 setlinejoin 0 setlinecap  .05 W  1 1 1 RGB S\n");
 DO(m,23){ M(1-.4*(m+.2),0)L(1-.4*(m+.4),0);} fprintf(o,".09 W  1 .4 0 RGB S\n");
 DO(m,23){ M(1-.4*(m+.7),0)L(1-.4*(m+.9),0);} fprintf(o,".09 W  0 .4 1 RGB S\n");
 //M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W  0 0 0 RGB S\n");
 // May it be, that, some printers do not interpret well the dashing ?
 fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
        system("epstopdf QQFacMap.eps");        
        system(    "open QQFacMap.pdf");        //for LINUX
 //     getchar(); system("killall Preview");//for mac
 }
//

Latex generator of labels

%
\documentclass[12pt,a4paper,oneside]{book}
%\newcommand \EN[1] {{#1}}   	% make the English version
\newcommand \EN[1] {{}}    	% suppress the English version
\newcommand \RU[1] {{#1}}   	% make the Russian version (in this document not supported)
%\newcommand \RU[1] {{}}      	% suppress the Russian version
%The Japanese version is not yet supported. While \JP is used to suppress several lines at once.
\newcommand \JP[1] {{}}   	 % ореsuppress some text
%\usepackage[space]{cite }% If exist.
\usepackage[utf8]{inputenc}
\usepackage[T2A]{fontenc}
\usepackage[russian]{babel}
\usepackage{latexsym,amsmath,amssymb,amsbsy,graphicx}

\usepackage{rotating}
\usepackage{hyperref} 
\usepackage{wrapfig}
\usepackage{geometry}
%\renewcommand\baselinestretch{.94}
%\renewcommand\baselinestretch{.94}
%\renewcommand\baselinestretch{1.15}
%\renewcommand\baselinestretch{1.2}
%\renewcommand\baselinestretch{1.2}
\paperwidth150mm
%\paperheight 257mm
%\paperheight 216mm
\paperheight 147mm
%\textwidth 175mm
\textwidth 150mm
%\oddsidemargin 5mm
\oddsidemargin -72pt
%\topmargin -17mm
\topmargin -103pt
\textheight 257mm
\pagestyle{empty}
\large

\usepackage{color}
\definecolor{rose}{rgb}{1,.9,1}
\renewcommand\thesection{\arabic{section}}
\renewcommand\figurename{Рис.}
%\renewcommand\refname{References}
%\renewcommand\figurename{Fig.}
\newcommand \be {\begin{eqnarray}}
\newcommand \ee {\end{eqnarray} }
\newcommand \sx {\scalebox}
\newcommand \rme {{\rm e}}	 %%makes the base of natural logarithms Roman font 
%\newcommand \rme {{e}}	%%makes the base of natural logarithms Italics font; choose one of these
\newcommand \rmi {{\rm i}}	 %%imaginary unity is always roman font
\newcommand \ds {\displaystyle}
\newcommand \bN {\mathbb{N}}
\newcommand \bC {\mathbb{C}}
\newcommand \bR {\mathbb{R}}
\newcommand \cO {\mathcal{O}}
\newcommand \cF {\mathcal{F}}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \nS {\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}
\newcommand \pS {{~}~{~}}
\newcommand \fac {\mathrm{Factorial}}
\newcommand {\rf}[1] {(\ref{#1})}
\newcommand{\iL}[1] {~\label{#1}\pS \rm[#1]\nS}	%make the labels visible
%\newcommand{\iL}[1] {\label{#1}}			%make the labels invisible; choose one of these options
\newcommand \eL[1] {\iL{#1}\ee}
\newcommand \ing \includegraphics
\newcommand \tet {\mathrm{tet}}
\parindent 0pt
\begin{document}
\hskip -28pt
%{\sx{.72}{\begin{picture}(362,330)
{\sx{1.25}{\begin{picture}(362,363)
\put(0,0){\ing{QQFacMap}}
\put(30,357){\sx{1.3}{$y$}}
\put(30,317){\sx{1.3}{$6$}}
\put(30,277){\sx{1.3}{$4$}}
\put(30,237){\sx{1.3}{$2$}}
\put(29,196){\sx{1.3}{$0$}}
\put(20,156){\sx{1.3}{$-2$}}
\put(20,116){\sx{1.3}{$-4$}}
\put(20,76){\sx{1.3}{$-6$}}
\put(20,36){\sx{1.2}{$-8$}}
\put(70,30){\sx{1.1}{$-6$}}
\put(111,30){\sx{1.1}{$-4$}}
\put(151,30){\sx{1.1}{$-2$}}
\put(198.6,30){\sx{1.1}{$0$}}
\put(238.6,30){\sx{1.1}{$2$}}
\put(278.6,30){\sx{1.1}{$4$}}
\put(318.6,30){\sx{1.1}{$6$}}
\put(355,30){\sx{1.1}{$x$}}
\put(70,198){\sx{1.3}{\bf cut}} %central
%\put(182,263){\rot{42}\sx{1.6}{\bf cut}\ero}
\put(189,260){\rot{42}\sx{1.6}{\bf cut}\ero}
\put(193,209){\rot{-24}\sx{1.6}{\bf cut}\ero}
\put(221,290){\rot{-35}\sx{1.6}{$u\!=\!0$}\ero}
\put(212,277){\rot{-40}\sx{1.6}{$v\!=\!0$}\ero}
\put(199,266){\rot{-47}\sx{1.6}{$u\!=\!0$}\ero}
\put(299,196.6){\sx{1.6}{$v\!=\!0$}}
\end{picture}}}
\end{document}
%

Warning

The code is extracted from the Book "as is". It can be significantly shortened producing the same picture.

References

  1. http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1
    http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf English version
    http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf Russian version
    D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14)
  2. https://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014.
  3. https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - Lambert Academic Publishing, 2020/7/28
  4. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:13, 1 December 2018Thumbnail for version as of 06:13, 1 December 2018885 × 868 (437 KB)Maintenance script (talk | contribs)Importing image file

There are no pages that use this file.

Metadata