Difference between revisions of "File:Tet5loplot.jpg"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
($ -> \( ; description ; refs ; pre ; keywords)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
  +
{{oq|Tet5loplot.jpg|Original file ‎(1,477 × 1,486 pixels, file size: 283 KB, MIME type: image/jpeg)|400}}
Importing image file
 
  +
  +
Fig.19.3 from page 259 of of book «[[Superfunctions]]»<ref name="be">
  +
https://mizugadro.mydns.jp/BOOK/468.pdf
  +
D.Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020.
  +
</ref>, 2020.
  +
  +
This picture is used also as Рис.19.2 at page 266 of the Russian version «[[Суперфункции]]»<ref name name="br">
  +
https://mizugadro.mydns.jp/BOOK/202.pdf
  +
Д.Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014.
  +
</ref>, 2014.
  +
  +
The figure shows the graphical search for the real [[fixed point]]s of [[tetration]].
  +
  +
The curves show
  +
\(y=\mathrm{tet}_b(x)\) for various \(b\); line \(y\!=\!x\) is also drawn.
  +
  +
Notations:
  +
  +
\( \mathrm e\!=\!\exp(1)\!\approx\!2.71\) is base of the natural logarithm,
  +
  +
\(\eta=\exp(1/\mathrm e) \approx 1.41 \)
  +
  +
\(L_{\mathrm e,0}\approx -1.8503545290271812\) is the only real fixed point of the [[natural tetration]], \(b\!=\!\mathrm e\)
  +
  +
\(\tau\!\approx\! 1.63532\) is crytical base; at base \(b\!=\!\tau\), the [[tetration]] has 2 real fixed points:
  +
Regular one at \(L_{\tau,0}\!\approx\! -1.7\) and exotic one \(L_{\tau,1}\!\approx\!3.087\)
  +
  +
At smaller base \(b\), function \(\mathrm{tet}_b\) has 3 regular real fixed points; in this sense, variety of [[supertetration]]s is richer, than that of
  +
[[superexponential]]s.
  +
  +
An \(b\) decreases, approaching the [[Henryk constant]] \(\eta=\exp(1/\mathrm e)\), the biggest fixed point runs to infinity;
  +
and at \(1\!<\!b\!\le\! \eta\), function \(\mathrm{tet}_b\) has two real regular fixed points.
  +
  +
==[[C++]] generator of curves==
  +
/* Files [[ado.cin]] and [[fit1.cin]] should be loaded in order to compile the code below:
  +
<pre>
  +
#include <math.h>
  +
#include <stdio.h>
  +
#include <stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
//using namespace std;
  +
#include <complex>
  +
typedef std::complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
//b=10
  +
//#include "f4ten.cin"
  +
#include "fit1.cin"
  +
#include "ado.cin"
  +
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
  +
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
  +
#define o(x,y) fprintf(o,"%6.4f %6.4f o\n",0.+x,0.+y);
  +
int main(){ int j,k,m,n; DB p,q,t1,t3,u,v,w,x,y; z_type z,c,d;
  +
FILE *o;o=fopen("tet5loplo.eps","w");ado(o,708,708);
  +
fprintf(o,"204 204 translate\n 100 100 scale\n");
  +
fprintf(o,"2 setlinecap\n");
  +
for(m=-2;m<6;m++){if(m!=0){M(m,-2)L(m,5)}}
  +
for(n=-2;n<6;n++){if(n!=0){M(-2,n)L(5,n)}} fprintf(o,".006 W 0 0 0 RGB S\n");
  +
M(-2,0)L(5.1,0) M(0, -2)L(0,5.1) fprintf(o,".01 W 0 0 0 RGB S\n");
  +
M(0,M_E)L(1.,M_E) fprintf(o,".006 W 0 0 0 RGB S\n");
  +
fprintf(o,"1 setlinejoin 1 setlinecap\n");
  +
DO(m,300){x=-1.74+.02*m; y=Re(FIT1(log(1.7),x)); if(y>5.3) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .5 0 RGB S\n");
  +
DO(m,300){x=-1.72+.03*m; y=Re(FIT1(log(1.63532),x)); if(y>5.3) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .5 0 RGB S\n");
  +
DO(m,300){x=-1.72+.03*m; y=Re(FIT1(log(1.6),x)); if(y>5.3) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .5 0 RGB S\n");
  +
DO(m,300){x=-1.68+.04*m; y=Re(FIT1(log(1.5),x)); if(x>5.1 || y>5.3) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .5 0 RGB S\n");
  +
DO(m,300){x=-1.65+.04*m; y=Re(FIT1(1./M_E,x)); if(x>5.1) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".03 W 0 0 .7 RGB S\n");
  +
DO(m,300){x=-1.64+.04*m; y=Re(FIT1(log(sqrt(2.)),x)); if(x>5.1) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".03 W .8 0 0 RGB S\n");
  +
DO(m,340){x=-1.873+.01*m; y=Re(FIT1(1.,x)); if(y>5.) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 0 RGB S\n");
  +
M(-2,-2)L(5,5) fprintf(o,".01 W 0 0 0 RGB S\n");
  +
x=3.087; M(x,0) L(x,x) L(0,x) fprintf(o,".001 W 0 0 0 RGB S\n");
  +
DB Lt=-1.8503545290271812;
  +
M(Lt,0) L(Lt,Lt) L(0,Lt); fprintf(o,".001 W 0 0 0 RGB S\n");
  +
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
  +
system("epstopdf tet5loplo.eps");
  +
system( "open tet5loplo.pdf"); //mac
  +
getchar(); system("killall Preview");// mac
  +
}
  +
</pre>
  +
==[[Latex]] generator of labels==
  +
<pre>
  +
\documentclass[12pt]{article}
  +
\usepackage{geometry} % See geometry.pdf
  +
\geometry{letterpaper} % ... or a4paper or a5paper or ... ??
  +
\usepackage{graphicx}
  +
\usepackage{amssymb}
  +
\usepackage{hyperref}
  +
\usepackage{rotating}
  +
\usepackage[utf8x]{inputenc}
  +
\usepackage[english,russian]{babel} %some packages are not used
  +
\usepackage{color}
  +
\definecolor{red}{rgb}{1,0.1,0.1}
  +
\definecolor{black}{rgb}{0,0,0}
  +
\definecolor{white}{rgb}{1,1,1}
  +
\definecolor{yellow}{rgb}{1,.93,0}
  +
\definecolor{bluedark}{rgb}{0,0,.87}
  +
\paperwidth 712pt
  +
\paperheight 716pt
  +
\topmargin -98pt
  +
\oddsidemargin -72pt
  +
\textwidth 810pt
  +
\textheight 870pt
  +
  +
\newcommand \sx {\scalebox}
  +
\newcommand \ing {\includegraphics}
  +
\newcommand \tet {\mathrm{tet}}
  +
\newcommand \pen {\mathrm{pen}}
  +
\newcommand \bC {\mathbb C}
  +
\newcommand \fac {\mathrm {Factorial}}
  +
\newcommand \rme {\mathrm e}
  +
\newcommand \rmi {\mathrm i}
  +
\newcommand \ds {\displaystyle}
  +
\newcommand \rot {\begin{rotate}}
  +
\newcommand \ero {\end{rotate}}
  +
  +
\begin{document}
  +
\parindent 0pt
  +
{\normalsize
  +
\begin{picture}(702,700)\put(0,0){\ing{tet5loplo}}
  +
\put( 172,680){\sx{4}{$y$}}
  +
\put( 172,590){\sx{4}{$4$}}
  +
\put( 182,467){\sx{4}{e}}
  +
\put( 172,390){\sx{4}{$2$}}
  +
\put( 172,190){\sx{4}{$0$}}
  +
\put( 194,164){\sx{4}{$0$}}
  +
\put( 394,164){\sx{4}{$2$}}
  +
\put( 594,164){\sx{4}{$4$}}
  +
\put( 686,166){\sx{4}{$x$}}
  +
\put(344,570){\sx{4}{\rot{80} $b\!=\! \rme$ \ero } }
  +
\put(522,574){\sx{4}{\rot{66} $b\!=\!1.7$ \ero } }
  +
\put(600,603){\sx{4}{\rot{64} $b\!=\!\tau$ \ero } }
  +
\put(550,492){\sx{4}{\rot{42} $b\!=\!1.6$ \ero } }
  +
%\put(574,422){\sx{4}{\rot{13} $b\!=\!1.5$ \ero } }
  +
\put(580,438){\sx{4}{\rot{14} $b\!=\!1.5$ \ero } }
  +
\put(592,400){\sx{4}{\rot{7} $b\!=\! \eta$ \ero}}
  +
\put(574,345){\sx{4}{\rot{2}$b\!=\!\sqrt{2}$\ero}}
  +
\put(130,504){\sx{4}{$L_{\tau,1}$}}
  +
\put(500,170){\sx{4}{$L_{\tau,1}$}}
  +
\put(-2,219){\sx{4}{$L_{\mathrm e,0}$}}
  +
\put(202,6){\sx{4}{$L_{\mathrm e,0}$}}
  +
\end{picture}}
  +
\end{document}
  +
</pre>
  +
==References==
  +
{{ref}}
  +
{{fer}}
  +
==Keywords==
  +
«[[]]»,
  +
«[[Explicit plot]]»,
  +
«[[Fixed point]]»,
  +
«[[Natural tetration]]»,
  +
«[[Tetration]]»,
  +
«[[Pentation]]»,
  +
«[[Superfinction]]»,
  +
«[[Superfinctions]]»,
  +
  +
[[Category:Book]]
  +
[[Category:BookPlot]]
  +
[[Category:C++]]
  +
[[Category:Fixed point]]
  +
[[Category:Latex]]
  +
[[Category:Explicit plot]]
  +
[[Category:Pentation]]
  +
[[Category:Tetration]]
  +
[[Category:Superfinction]]
  +
[[Category:Superfinctions]]

Latest revision as of 21:17, 3 January 2026


Fig.19.3 from page 259 of of book «Superfunctions»[1], 2020.

This picture is used also as Рис.19.2 at page 266 of the Russian version «Суперфункции»[2], 2014.

The figure shows the graphical search for the real fixed points of tetration.

The curves show \(y=\mathrm{tet}_b(x)\) for various \(b\); line \(y\!=\!x\) is also drawn.

Notations:

\( \mathrm e\!=\!\exp(1)\!\approx\!2.71\) is base of the natural logarithm,

\(\eta=\exp(1/\mathrm e) \approx 1.41 \)

\(L_{\mathrm e,0}\approx -1.8503545290271812\) is the only real fixed point of the natural tetration, \(b\!=\!\mathrm e\)

\(\tau\!\approx\! 1.63532\) is crytical base; at base \(b\!=\!\tau\), the tetration has 2 real fixed points: Regular one at \(L_{\tau,0}\!\approx\! -1.7\) and exotic one \(L_{\tau,1}\!\approx\!3.087\)

At smaller base \(b\), function \(\mathrm{tet}_b\) has 3 regular real fixed points; in this sense, variety of supertetrations is richer, than that of superexponentials.

An \(b\) decreases, approaching the Henryk constant \(\eta=\exp(1/\mathrm e)\), the biggest fixed point runs to infinity; and at \(1\!<\!b\!\le\! \eta\), function \(\mathrm{tet}_b\) has two real regular fixed points.

C++ generator of curves

/* Files ado.cin and fit1.cin should be loaded in order to compile the code below:

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//b=10
//#include "f4ten.cin"
#include "fit1.cin"
#include "ado.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
#define o(x,y) fprintf(o,"%6.4f %6.4f o\n",0.+x,0.+y);
int main(){ int j,k,m,n; DB p,q,t1,t3,u,v,w,x,y; z_type z,c,d;
FILE *o;o=fopen("tet5loplo.eps","w");ado(o,708,708);
fprintf(o,"204 204 translate\n 100 100 scale\n");
fprintf(o,"2 setlinecap\n");
for(m=-2;m<6;m++){if(m!=0){M(m,-2)L(m,5)}} 
for(n=-2;n<6;n++){if(n!=0){M(-2,n)L(5,n)}}  fprintf(o,".006 W 0 0 0 RGB S\n");
M(-2,0)L(5.1,0) M(0, -2)L(0,5.1)             fprintf(o,".01  W 0 0 0 RGB S\n");
M(0,M_E)L(1.,M_E)                             fprintf(o,".006  W 0 0 0 RGB S\n"); 
fprintf(o,"1 setlinejoin 1 setlinecap\n");
DO(m,300){x=-1.74+.02*m; y=Re(FIT1(log(1.7),x)); if(y>5.3) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .5 0 RGB S\n");
DO(m,300){x=-1.72+.03*m; y=Re(FIT1(log(1.63532),x)); if(y>5.3) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .5 0 RGB S\n");
DO(m,300){x=-1.72+.03*m; y=Re(FIT1(log(1.6),x)); if(y>5.3) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .5 0 RGB S\n");
DO(m,300){x=-1.68+.04*m; y=Re(FIT1(log(1.5),x)); if(x>5.1 || y>5.3) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 .5 0 RGB S\n");
DO(m,300){x=-1.65+.04*m; y=Re(FIT1(1./M_E,x)); if(x>5.1) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".03 W 0 0 .7 RGB S\n");
DO(m,300){x=-1.64+.04*m; y=Re(FIT1(log(sqrt(2.)),x)); if(x>5.1) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".03 W .8 0 0 RGB S\n");
DO(m,340){x=-1.873+.01*m; y=Re(FIT1(1.,x)); if(y>5.) break; if(m==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 0 RGB S\n");
M(-2,-2)L(5,5)  fprintf(o,".01 W 0 0 0 RGB S\n");
x=3.087; M(x,0) L(x,x) L(0,x) fprintf(o,".001 W 0 0 0 RGB S\n");
DB Lt=-1.8503545290271812;
M(Lt,0) L(Lt,Lt) L(0,Lt); fprintf(o,".001 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
       system("epstopdf tet5loplo.eps");
       system(    "open tet5loplo.pdf"); //mac
getchar(); system("killall Preview");// mac
}

Latex generator of labels

\documentclass[12pt]{article} 
\usepackage{geometry} % See geometry.pdf 
\geometry{letterpaper} % ... or a4paper or a5paper or ... ?? 
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{hyperref}
\usepackage{rotating}
\usepackage[utf8x]{inputenc}
\usepackage[english,russian]{babel} %some packages are not used
\usepackage{color}
\definecolor{red}{rgb}{1,0.1,0.1}
\definecolor{black}{rgb}{0,0,0}
\definecolor{white}{rgb}{1,1,1}
\definecolor{yellow}{rgb}{1,.93,0}
\definecolor{bluedark}{rgb}{0,0,.87}
\paperwidth 712pt
\paperheight 716pt
\topmargin -98pt
\oddsidemargin -72pt
\textwidth 810pt
\textheight 870pt

\newcommand \sx {\scalebox}
\newcommand \ing {\includegraphics}
\newcommand \tet {\mathrm{tet}}
\newcommand \pen {\mathrm{pen}}
\newcommand \bC {\mathbb C}
\newcommand \fac {\mathrm {Factorial}}
\newcommand \rme {\mathrm e}
\newcommand \rmi {\mathrm i}
\newcommand \ds {\displaystyle}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}

\begin{document}
\parindent 0pt
{\normalsize
\begin{picture}(702,700)\put(0,0){\ing{tet5loplo}}
\put( 172,680){\sx{4}{$y$}}
\put( 172,590){\sx{4}{$4$}}
\put( 182,467){\sx{4}{e}}
\put( 172,390){\sx{4}{$2$}}
\put( 172,190){\sx{4}{$0$}}
\put( 194,164){\sx{4}{$0$}}
\put( 394,164){\sx{4}{$2$}}
\put( 594,164){\sx{4}{$4$}}
\put( 686,166){\sx{4}{$x$}}
\put(344,570){\sx{4}{\rot{80} $b\!=\! \rme$ \ero } }
\put(522,574){\sx{4}{\rot{66} $b\!=\!1.7$ \ero } }
\put(600,603){\sx{4}{\rot{64} $b\!=\!\tau$ \ero } }
\put(550,492){\sx{4}{\rot{42} $b\!=\!1.6$ \ero } }
%\put(574,422){\sx{4}{\rot{13} $b\!=\!1.5$ \ero } }
\put(580,438){\sx{4}{\rot{14} $b\!=\!1.5$ \ero } }
\put(592,400){\sx{4}{\rot{7} $b\!=\! \eta$ \ero}}
\put(574,345){\sx{4}{\rot{2}$b\!=\!\sqrt{2}$\ero}}
\put(130,504){\sx{4}{$L_{\tau,1}$}}
\put(500,170){\sx{4}{$L_{\tau,1}$}}
\put(-2,219){\sx{4}{$L_{\mathrm e,0}$}}
\put(202,6){\sx{4}{$L_{\mathrm e,0}$}}
\end{picture}}
\end{document}

References

Keywords

«[[]]», «Explicit plot», «Fixed point», «Natural tetration», «Tetration», «Pentation», «Superfinction», «Superfinctions»,

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:14, 1 December 2018Thumbnail for version as of 06:14, 1 December 20181,477 × 1,486 (283 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata