Difference between revisions of "File:Sqrt2eitet.jpg"
(Importing image file) |
($ -> \( ; description ; refs ; pre ; keywords) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|Sqrt2eitet.jpg|Original file (3,051 × 3,022 pixels, file size: 1.36 MB, MIME type: image/jpeg)|400}} |
||
| − | Importing image file |
||
| + | |||
| + | Fig.16.6 from page 228 of book [[Superfunctions]]<ref> |
||
| + | https://mizugadro.mydns.jp/BOOK/468.pdf |
||
| + | D.Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020. |
||
| + | </ref>, 2020. |
||
| + | |||
| + | This image appears also as Рис.16.7 at page 232 of the Russian version «[[Суперфункции]]»<ref> |
||
| + | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
| + | Д.Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014. |
||
| + | </ref>, 2014. |
||
| + | |||
| + | The picture shows [[iterate]]s of the [[exponential]] to [[base sqrt2|base \(\sqrt{2}\)]]: |
||
| + | |||
| + | \( y=\exp_2^{\ n}(x) |
||
| + | \) |
||
| + | |||
| + | for various values of number \(n\). |
||
| + | |||
| + | For non-integer values of \(n\), |
||
| + | the iterates are expressed trough the [[tetration]] \(\mathrm{tet}_2\) |
||
| + | and the [[arctetration]] \(\mathrm{ate}_2\): |
||
| + | |||
| + | \( |
||
| + | \exp_2^{\ n}(z)= \mathrm{tet}_2( n + \mathrm{ate}_2(z) ) |
||
| + | \) |
||
| + | |||
| + | Evaluation of [[tetration]] and [[arctetration]] to |
||
| + | [[base sqrt2|base \(\sqrt{2}\)]] is described also in [[Mathematics of Computation]] |
||
| + | <ref> |
||
| + | http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html <br> |
||
| + | http://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf |
||
| + | D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). [[Mathematics of Computation]], 2010, v.79, p.1727-1756. |
||
| + | </ref>, 2010. |
||
| + | |||
| + | ==[[C++]] generator of the curves== |
||
| + | /* |
||
| + | Files [[ado.cin]], |
||
| + | [[sqrt2f21e.cin]], |
||
| + | [[sqrt2f21l.cin]] |
||
| + | should be loaded in order to compile the code below. */ |
||
| + | <pre> |
||
| + | #include<math.h> |
||
| + | #include<stdio.h> |
||
| + | #include<stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | #include <complex> |
||
| + | typedef std::complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "ado.cin" |
||
| + | // #include "sqrt2f45e.cin" |
||
| + | // #include "sqrt2f45l.cin" |
||
| + | #include "sqrt2f21e.cin" |
||
| + | #include "sqrt2f21l.cin" |
||
| + | DB B=sqrt(2.); |
||
| + | DB F(DB z) { return exp( exp( log(B)*z));} |
||
| + | DB G(DB z) { return log( log(z) )/log(B);} |
||
| + | |||
| + | int main(){ int m,n; double x,y,t; FILE *o; |
||
| + | o=fopen("itereq2tlo.eps","w"); ado(o,1420,1420); |
||
| + | fprintf(o,"701 701 translate 100 100 scale\n"); |
||
| + | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
| + | M(-7,1.99)L(3.995,2.01)L(4.02,7) |
||
| + | fprintf(o,"1 setlinecap 1 setlinejoin .03 W 0 .5 1 RGB S\n"); |
||
| + | M(1.99,-7)L(2.01,3.995)L(7,4.02) |
||
| + | fprintf(o,"1 setlinecap 1 setlinejoin .03 W 1 .5 0 RGB S\n"); |
||
| + | M(-7,-7)L(7,7) |
||
| + | fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 1 0 RGB S\n"); |
||
| + | for(m=-7;m<8;m++) {M(m,-7)L(m,7)} |
||
| + | for(m=-7;m<8;m++) {M(-7,m)L(7,m)} |
||
| + | fprintf(o,"2 setlinecap .01 W 0 0 0 RGB S\n"); |
||
| + | fprintf(o,"1 setlinecap 1 setlinejoin\n"); |
||
| + | DO(m,141){x=-7.01+.1*m;y=exp(log(B)*x);y=exp(log(B)*y);y=exp(log(B)*y); y=exp(log(B)*y); if(m==0)M(x,y) else L(x,y); if(y>7.) break;} |
||
| + | DO(m,141){x=-7.01+.1*m;y=exp(log(B)*x);y=exp(log(B)*y);y=exp(log(B)*y); if(m==0) M(x,y) else L(x,y);if(y>7.) break;} |
||
| + | fprintf(o,".04 W 0 0 1 RGB S\n"); |
||
| + | DO(m,141){x=-7.01+.1*m; y=exp(log(B)*x); y=exp(log(B)*y); if(m==0)M(x,y) else L(x,y); if(y>7.) break; } |
||
| + | DO(m,141){x=-7.01+.1*m; y=exp(log(B)*x); if(m==0)M(x,y) else L(x,y); if(y>7.) break;} |
||
| + | fprintf(o,".04 W 0 .5 1 RGB S\n"); |
||
| + | DO(m,71){x=.01+.1*m; y=log(x)/log(B); if(m==0)M(x,y) else L(x,y); if(y>7.) break; } |
||
| + | fprintf(o,".04 W 1 .5 0 RGB S\n"); |
||
| + | DO(m,141){x=-7.01+.1*m;y=exp(log(B)*x);y=exp(log(B)*y);y=exp(log(B)*y); y=exp(log(B)*y); if(m==0)M(y,x) else L(y,x); if(y>7.) break;} |
||
| + | DO(m,141){x=-7.01+.1*m;y=exp(log(B)*x);y=exp(log(B)*y);y=exp(log(B)*y); if(m==0) M(y,x) else L(y,x);if(y>7.) break;} |
||
| + | fprintf(o,".04 W 1 0 0 RGB S\n"); |
||
| + | DO(m,141){x=-7.01+.1*m; y=exp(log(B)*x); y=exp(log(B)*y); if(m==0)M(y,x) else L(y,x); if(y>7.) break; } |
||
| + | DO(m,141){x=-7.01+.1*m; y=exp(log(B)*x); if(m==0)M(y,x) else L(y,x); if(y>7.) break;} |
||
| + | fprintf(o,".04 W 1 .5 0 RGB S\n"); |
||
| + | /* |
||
| + | DO(m,131){x=1.41+.1*m;y=log(x)/log(B);y=log(y)/log(B); if(m==0)M(x,y) else L(x,y);} |
||
| + | DO(m,131){x=1.63+.1*m;y=log(x)/log(B);y=log(y)/log(B);y=log(y)/log(B); if(m==0)M(x,y) else L(x,y);} |
||
| + | DO(m,131){x=1.75+.1*m;y=log(x)/log(B);y=log(y)/log(B);y=log(y)/log(B);y=log(y)/log(B); if(m==0)M(x,y) else L(x,y);} |
||
| + | */ |
||
| + | fprintf(o,"1 setlinecap 1 setlinejoin .04 W 1 .5 0 RGB S\n"); |
||
| + | // for(n=-20;n<21;n++){t=.1*n; M(2,2); DO(m,122){x=2.05+.1*m; y=Re(F45E(t+F45L(x+1.e-14*I))); L(x,y); if(y>14.1)break;} } |
||
| + | for(n=-20;n<21;n++){t=.1*n; M(4,4); DO(m,221){x=3.95-.05*m; y=Re(F21E(t+F21L(x+1.e-12*I))); L(x,y); if(y>14.1 || y<-7.)break;} } |
||
| + | fprintf(o,"1 setlinecap 1 setlinejoin .02 W 0 0 0 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf itereq2tlo.eps"); |
||
| + | system( "open itereq2tlo.pdf"); |
||
| + | getchar(); system("killall Preview"); |
||
| + | } |
||
| + | </pre> |
||
| + | ==[[Latex]] generator of the labels== |
||
| + | <pre> |
||
| + | \documentclass[12pt]{article} |
||
| + | \usepackage{geometry} |
||
| + | \usepackage{graphicx} |
||
| + | \usepackage{rotating} |
||
| + | \paperwidth 1470pt |
||
| + | \paperheight 1456pt |
||
| + | \topmargin -103pt |
||
| + | \oddsidemargin -52pt |
||
| + | \textwidth 1604pt |
||
| + | \textheight 1600pt |
||
| + | \pagestyle {empty} |
||
| + | \newcommand \sx {\scalebox} |
||
| + | \newcommand \rot {\begin{rotate}} |
||
| + | \newcommand \ero {\end{rotate}} |
||
| + | \newcommand \ing {\includegraphics} |
||
| + | \parindent 0pt |
||
| + | \pagestyle{empty} |
||
| + | \begin{document} |
||
| + | \begin{picture}(1446,1446) |
||
| + | %\put(10,10){\ing{IterPowPlot}} |
||
| + | \put(40,40){\ing{Itereq2tlo}} |
||
| + | \put(4,1420){\sx{4.4}{$y$}} |
||
| + | \put(04,1333){\sx{4}{$6$}} |
||
| + | \put(04,1233){\sx{4}{$5$}} |
||
| + | \put(04,1133){\sx{4}{$4$}} |
||
| + | \put(04,1033){\sx{4}{$3$}} |
||
| + | \put(04, 933){\sx{4}{$2$}} |
||
| + | \put(04, 833){\sx{4}{$1$}} |
||
| + | \put(04, 733){\sx{4}{$0$}} |
||
| + | \put(-24, 632){\sx{4}{$-1$}} |
||
| + | \put(-24, 532){\sx{4}{$-2$}} |
||
| + | \put(-24, 432){\sx{4}{$-3$}} |
||
| + | \put(-24, 332){\sx{4}{$-4$}} |
||
| + | \put(-24, 232){\sx{4}{$-5$}} |
||
| + | \put(-24, 132){\sx{4}{$-6$}} |
||
| + | |||
| + | \put(100,0){\sx{4}{$-6$}} |
||
| + | \put(200,0){\sx{4}{$-5$}} |
||
| + | \put(300,0){\sx{4}{$-4$}} |
||
| + | \put(400,0){\sx{4}{$-3$}} |
||
| + | \put(500,0){\sx{4}{$-2$}} |
||
| + | \put(600,0){\sx{4}{$-1$}} |
||
| + | \put(730,0){\sx{4}{$0$}} |
||
| + | \put(830,0){\sx{4}{$1$}} |
||
| + | \put(930,0){\sx{4}{$2$}} |
||
| + | \put(1030,0){\sx{4}{$3$}} |
||
| + | \put(1130,0){\sx{4}{$4$}} |
||
| + | \put(1230,0){\sx{4}{$5$}} |
||
| + | \put(1330,0){\sx{4}{$6$}} |
||
| + | \put(1422,0){\sx{4}{$x$}} |
||
| + | |||
| + | \put( 66,930){\sx{5.5}{\rot{0}$n\!\rightarrow + \infty$\ero}} |
||
| + | \put( 66,830){\sx{5.5}{\rot{1}$n\!=\!2$\ero}} |
||
| + | \put( 66,736){\sx{5.5}{\rot{3}$n\!=\!1$\ero}} |
||
| + | \put( 78,618){\sx{5.5}{\rot{5}$n\!=\!0.5$\ero}} |
||
| + | \put( 96,522){\sx{5.5}{\rot{11}$n\!=\!0.3$\ero}} |
||
| + | \put(116,448){\sx{5.5}{\rot{16}$n\!=\!0.2$\ero}} |
||
| + | \put(142,344){\sx{5.5}{\rot{25}$n\!=\!0.1$\ero}} |
||
| + | \put(212,190){\sx{5.8}{\rot{44}$n\!=\!0$\ero}} |
||
| + | \put(362,100){\sx{5.5}{\rot{64}$n\!=\!-0.1$\ero}} |
||
| + | \put(470, 60){\sx{5.5}{\rot{73}$n\!=\!-0.2$\ero}} |
||
| + | \put(606, 50){\sx{5.5}{\rot{82}$n\!=\!-0.4$\ero}} |
||
| + | \put(770, 50){\sx{5.5}{\rot{86}$n\!=\!-1$\ero}} |
||
| + | \put(866, 50){\sx{5.5}{\rot{88}$n\!=\!-2$\ero}} |
||
| + | \put(964, 50){\sx{5.5}{\rot{90}$n\!\rightarrow -\infty$\ero}} |
||
| + | % |
||
| + | \put(1222,1298){\sx{5.5}{\rot{74}$n\!=\!2$\ero}} |
||
| + | \put(1255,1288){\sx{5.5}{\rot{64}$n\!=\!1$\ero}} |
||
| + | \put(1302,1282){\sx{5.5}{\rot{44}$n\!=\!0$\ero}} |
||
| + | \put(1272,1208){\sx{5.5}{\rot{24}$n\!=\!-1$\ero}} |
||
| + | \end{picture} |
||
| + | \end{document} |
||
| + | </pre> |
||
| + | ==Refereces== |
||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | «[[]]», |
||
| + | |||
| + | «[[Arctetration]]», |
||
| + | «[[Base sqrt2]]», |
||
| + | «[[Exponential]]», |
||
| + | «[[Iterte]]», |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | «[[Tetration]]», |
||
| + | |||
| + | «[[]]», |
||
| + | «[[Суперфункции]]», |
||
| + | «[[]]», |
||
| + | |||
| + | [[Category:Arctetration]] |
||
| + | [[Category:Base sqrt2]] |
||
| + | [[Category:Sqrt2]] |
||
| + | [[Category:Book]] |
||
| + | [[Category:BookPlot]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Explicit plot]] |
||
| + | [[Category:Exp]] |
||
| + | [[Category:Exponential]] |
||
| + | [[Category:Latex]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Tetration]] |
||
Latest revision as of 17:05, 28 December 2025
Fig.16.6 from page 228 of book Superfunctions[1], 2020.
This image appears also as Рис.16.7 at page 232 of the Russian version «Суперфункции»[2], 2014.
The picture shows iterates of the exponential to base \(\sqrt{2}\):
\( y=\exp_2^{\ n}(x) \)
for various values of number \(n\).
For non-integer values of \(n\), the iterates are expressed trough the tetration \(\mathrm{tet}_2\) and the arctetration \(\mathrm{ate}_2\):
\( \exp_2^{\ n}(z)= \mathrm{tet}_2( n + \mathrm{ate}_2(z) ) \)
Evaluation of tetration and arctetration to base \(\sqrt{2}\) is described also in Mathematics of Computation [3], 2010.
C++ generator of the curves
/* Files ado.cin, sqrt2f21e.cin, sqrt2f21l.cin should be loaded in order to compile the code below. */
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
// #include "sqrt2f45e.cin"
// #include "sqrt2f45l.cin"
#include "sqrt2f21e.cin"
#include "sqrt2f21l.cin"
DB B=sqrt(2.);
DB F(DB z) { return exp( exp( log(B)*z));}
DB G(DB z) { return log( log(z) )/log(B);}
int main(){ int m,n; double x,y,t; FILE *o;
o=fopen("itereq2tlo.eps","w"); ado(o,1420,1420);
fprintf(o,"701 701 translate 100 100 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
M(-7,1.99)L(3.995,2.01)L(4.02,7)
fprintf(o,"1 setlinecap 1 setlinejoin .03 W 0 .5 1 RGB S\n");
M(1.99,-7)L(2.01,3.995)L(7,4.02)
fprintf(o,"1 setlinecap 1 setlinejoin .03 W 1 .5 0 RGB S\n");
M(-7,-7)L(7,7)
fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 1 0 RGB S\n");
for(m=-7;m<8;m++) {M(m,-7)L(m,7)}
for(m=-7;m<8;m++) {M(-7,m)L(7,m)}
fprintf(o,"2 setlinecap .01 W 0 0 0 RGB S\n");
fprintf(o,"1 setlinecap 1 setlinejoin\n");
DO(m,141){x=-7.01+.1*m;y=exp(log(B)*x);y=exp(log(B)*y);y=exp(log(B)*y); y=exp(log(B)*y); if(m==0)M(x,y) else L(x,y); if(y>7.) break;}
DO(m,141){x=-7.01+.1*m;y=exp(log(B)*x);y=exp(log(B)*y);y=exp(log(B)*y); if(m==0) M(x,y) else L(x,y);if(y>7.) break;}
fprintf(o,".04 W 0 0 1 RGB S\n");
DO(m,141){x=-7.01+.1*m; y=exp(log(B)*x); y=exp(log(B)*y); if(m==0)M(x,y) else L(x,y); if(y>7.) break; }
DO(m,141){x=-7.01+.1*m; y=exp(log(B)*x); if(m==0)M(x,y) else L(x,y); if(y>7.) break;}
fprintf(o,".04 W 0 .5 1 RGB S\n");
DO(m,71){x=.01+.1*m; y=log(x)/log(B); if(m==0)M(x,y) else L(x,y); if(y>7.) break; }
fprintf(o,".04 W 1 .5 0 RGB S\n");
DO(m,141){x=-7.01+.1*m;y=exp(log(B)*x);y=exp(log(B)*y);y=exp(log(B)*y); y=exp(log(B)*y); if(m==0)M(y,x) else L(y,x); if(y>7.) break;}
DO(m,141){x=-7.01+.1*m;y=exp(log(B)*x);y=exp(log(B)*y);y=exp(log(B)*y); if(m==0) M(y,x) else L(y,x);if(y>7.) break;}
fprintf(o,".04 W 1 0 0 RGB S\n");
DO(m,141){x=-7.01+.1*m; y=exp(log(B)*x); y=exp(log(B)*y); if(m==0)M(y,x) else L(y,x); if(y>7.) break; }
DO(m,141){x=-7.01+.1*m; y=exp(log(B)*x); if(m==0)M(y,x) else L(y,x); if(y>7.) break;}
fprintf(o,".04 W 1 .5 0 RGB S\n");
/*
DO(m,131){x=1.41+.1*m;y=log(x)/log(B);y=log(y)/log(B); if(m==0)M(x,y) else L(x,y);}
DO(m,131){x=1.63+.1*m;y=log(x)/log(B);y=log(y)/log(B);y=log(y)/log(B); if(m==0)M(x,y) else L(x,y);}
DO(m,131){x=1.75+.1*m;y=log(x)/log(B);y=log(y)/log(B);y=log(y)/log(B);y=log(y)/log(B); if(m==0)M(x,y) else L(x,y);}
*/
fprintf(o,"1 setlinecap 1 setlinejoin .04 W 1 .5 0 RGB S\n");
// for(n=-20;n<21;n++){t=.1*n; M(2,2); DO(m,122){x=2.05+.1*m; y=Re(F45E(t+F45L(x+1.e-14*I))); L(x,y); if(y>14.1)break;} }
for(n=-20;n<21;n++){t=.1*n; M(4,4); DO(m,221){x=3.95-.05*m; y=Re(F21E(t+F21L(x+1.e-12*I))); L(x,y); if(y>14.1 || y<-7.)break;} }
fprintf(o,"1 setlinecap 1 setlinejoin .02 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf itereq2tlo.eps");
system( "open itereq2tlo.pdf");
getchar(); system("killall Preview");
}
Latex generator of the labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphicx}
\usepackage{rotating}
\paperwidth 1470pt
\paperheight 1456pt
\topmargin -103pt
\oddsidemargin -52pt
\textwidth 1604pt
\textheight 1600pt
\pagestyle {empty}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\parindent 0pt
\pagestyle{empty}
\begin{document}
\begin{picture}(1446,1446)
%\put(10,10){\ing{IterPowPlot}}
\put(40,40){\ing{Itereq2tlo}}
\put(4,1420){\sx{4.4}{$y$}}
\put(04,1333){\sx{4}{$6$}}
\put(04,1233){\sx{4}{$5$}}
\put(04,1133){\sx{4}{$4$}}
\put(04,1033){\sx{4}{$3$}}
\put(04, 933){\sx{4}{$2$}}
\put(04, 833){\sx{4}{$1$}}
\put(04, 733){\sx{4}{$0$}}
\put(-24, 632){\sx{4}{$-1$}}
\put(-24, 532){\sx{4}{$-2$}}
\put(-24, 432){\sx{4}{$-3$}}
\put(-24, 332){\sx{4}{$-4$}}
\put(-24, 232){\sx{4}{$-5$}}
\put(-24, 132){\sx{4}{$-6$}}
\put(100,0){\sx{4}{$-6$}}
\put(200,0){\sx{4}{$-5$}}
\put(300,0){\sx{4}{$-4$}}
\put(400,0){\sx{4}{$-3$}}
\put(500,0){\sx{4}{$-2$}}
\put(600,0){\sx{4}{$-1$}}
\put(730,0){\sx{4}{$0$}}
\put(830,0){\sx{4}{$1$}}
\put(930,0){\sx{4}{$2$}}
\put(1030,0){\sx{4}{$3$}}
\put(1130,0){\sx{4}{$4$}}
\put(1230,0){\sx{4}{$5$}}
\put(1330,0){\sx{4}{$6$}}
\put(1422,0){\sx{4}{$x$}}
\put( 66,930){\sx{5.5}{\rot{0}$n\!\rightarrow + \infty$\ero}}
\put( 66,830){\sx{5.5}{\rot{1}$n\!=\!2$\ero}}
\put( 66,736){\sx{5.5}{\rot{3}$n\!=\!1$\ero}}
\put( 78,618){\sx{5.5}{\rot{5}$n\!=\!0.5$\ero}}
\put( 96,522){\sx{5.5}{\rot{11}$n\!=\!0.3$\ero}}
\put(116,448){\sx{5.5}{\rot{16}$n\!=\!0.2$\ero}}
\put(142,344){\sx{5.5}{\rot{25}$n\!=\!0.1$\ero}}
\put(212,190){\sx{5.8}{\rot{44}$n\!=\!0$\ero}}
\put(362,100){\sx{5.5}{\rot{64}$n\!=\!-0.1$\ero}}
\put(470, 60){\sx{5.5}{\rot{73}$n\!=\!-0.2$\ero}}
\put(606, 50){\sx{5.5}{\rot{82}$n\!=\!-0.4$\ero}}
\put(770, 50){\sx{5.5}{\rot{86}$n\!=\!-1$\ero}}
\put(866, 50){\sx{5.5}{\rot{88}$n\!=\!-2$\ero}}
\put(964, 50){\sx{5.5}{\rot{90}$n\!\rightarrow -\infty$\ero}}
%
\put(1222,1298){\sx{5.5}{\rot{74}$n\!=\!2$\ero}}
\put(1255,1288){\sx{5.5}{\rot{64}$n\!=\!1$\ero}}
\put(1302,1282){\sx{5.5}{\rot{44}$n\!=\!0$\ero}}
\put(1272,1208){\sx{5.5}{\rot{24}$n\!=\!-1$\ero}}
\end{picture}
\end{document}
Refereces
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf D.Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.
- ↑ http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014.
- ↑
http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html
http://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
Keywords
«[[]]»,
«Arctetration», «Base sqrt2», «Exponential», «Iterte», «Superfunction», «Superfunctions», «Tetration»,
«[[]]», «Суперфункции», «[[]]»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:14, 1 December 2018 | 3,051 × 3,022 (1.36 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.