Difference between revisions of "File:Sqrt2diimap80.jpg"
(Importing image file) |
($ -> \( ; description ; refs ; pre ; keywords) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|Sqrt2diimap80.jpg|Original file (2,302 × 2,306 pixels, file size: 1.27 MB, MIME type: image/jpeg)|400}} |
||
| − | Importing image file |
||
| + | |||
| + | Fig.16.10 at page 234 of book «[[Superfunctions]]»<ref> |
||
| + | http://mizugadro.mydns.jp/BOOK/468.pdf |
||
| + | Dmitrii Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020, |
||
| + | </ref> |
||
| + | |||
| + | The same image appears also as Рис.16.11 at page 240 of the Russian version «[[Суперфункции]]»<ref> |
||
| + | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
| + | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
| + | Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
||
| + | </ref>, 2014. |
||
| + | |||
| + | The picture shows the [[complex map]] of iterate number i of [[exponential]] to base \(\sqrt{2}\) constructed at its lower ("down") fixed point 2: |
||
| + | \[ |
||
| + | u\!+\!\mathrm i v= \exp_{\sqrt{2},\mathrm d}(x\!+\!\mathrm i y) |
||
| + | \] |
||
| + | |||
| + | The algorithm of the evaluation is also described in «[[Mathematics of computation]]»<ref> |
||
| + | http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html <br> |
||
| + | http://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf offprint |
||
| + | D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756. |
||
| + | </ref>, 2010. <!--(top right map)!--> |
||
| + | |||
| + | ==[[C++]] generator of the map== |
||
| + | /* Files [[ado.cin]], |
||
| + | [[conto.cin]], |
||
| + | [[sqrt2f21e.cin]] |
||
| + | [[sqrt2f21l.cin]] |
||
| + | should be loaded in order to compile the code below.*/ |
||
| + | <pre> |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | // using namespace std; |
||
| + | #include <complex> |
||
| + | typedef std::complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #include "conto.cin" |
||
| + | |||
| + | #include "sqrt2f45e.cin" |
||
| + | #include "sqrt2f45l.cin" |
||
| + | #include "sqrt2f21e.cin" |
||
| + | #include "sqrt2f21l.cin" |
||
| + | |||
| + | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
| + | int M=801,M1=M+1; |
||
| + | int N=405,N1=N+1; |
||
| + | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
| + | char v[M1*N1]; // v is working array |
||
| + | // FILE *o;o=fopen("04.eps","w"); ado(o,202,202); |
||
| + | FILE *o;o=fopen("sqrt2diima.eps","w"); ado(o,202,202); |
||
| + | fprintf(o,"101 101 translate\n 10 10 scale\n"); |
||
| + | DO(m,M1) X[m]=-10.+.025*(m-.5); |
||
| + | //DO(n,N1) Y[n]=-10.+.04*(n-.5); |
||
| + | // DO(n,200) Y[n]=sinh(3.*(n-200.5)/200.); |
||
| + | // DO(n,200) Y[n]=-10.+.05*(n-.5); |
||
| + | // Y[200]=-.0001; |
||
| + | // Y[201]= .0001; |
||
| + | for(n=0;n<N1;n++) Y[n]=.25*sinh(4.33*(n-202.5)/200.); |
||
| + | // for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-2); |
||
| + | for(m=-10;m<11;m++) {M(m,-10)L(m,10)} |
||
| + | for(n=-10;n<11;n++) {M( -10,n)L(10,n)} |
||
| + | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
| + | fprintf(o," .006 W 0 0 0 RGB S\n"); |
||
| + | // z_type tm,tp,F[M1*N1]; |
||
| + | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
| + | f[m*N1+n]=9999;} |
||
| + | DO(m,M1){x=X[m]; |
||
| + | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| + | c=F21L(z) + z_type(0.,1.); c=F21E(c); |
||
| + | p=Re(c); |
||
| + | q=Im(c); |
||
| + | if(p>-201. && p<201. && q>-201. && q<201. |
||
| + | && fabs(p)>1.e-14 |
||
| + | && fabs(q)>1.e-14 |
||
| + | ) { g[m*N1+n]=p; f[m*N1+n]=q;} |
||
| + | }} |
||
| + | p=2; q=.5; |
||
| + | for(m=-10;m<10;m++)for(n=2 ;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q); fprintf(o,".014 W 0 .7 0 RGB S\n"); |
||
| + | for(m=0;m<11;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q); fprintf(o,".014 W 1 0 0 RGB S\n"); |
||
| + | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q); fprintf(o,".014 W 0 0 1 RGB S\n"); |
||
| + | for(m= 1;m<40;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".03 W .8 0 0 RGB S\n"); |
||
| + | for(m= 1;m<40;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".03 W 0 0 .8 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, (0. ),-2*p,2*p); fprintf(o,".03 W .5 0 .5 RGB S\n"); |
||
| + | for(m=-40;m<41;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
| + | |||
| + | // #include "plofu.cin" |
||
| + | M(10,0)L(4,0)fprintf(o,"0 setlinecap .036 W 1 1 1 RGB S\n"); |
||
| + | for(n=0;n<17;n++){ M(4+.5*(n+.2),0) L(4+.5*(n+.4),0) } fprintf(o,".06 W 1 .5 0 RGB S\n"); |
||
| + | for(n=0;n<17;n++){ M(4+.5*(n+.7),0) L(4+.5*(n+.9),0) } fprintf(o,".06 W 0 .5 1 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf sqrt2diima.eps"); |
||
| + | system( "open sqrt2diima.pdf"); //for macintosh |
||
| + | } |
||
| + | |||
| + | |||
| + | </pre> |
||
| + | ==[[Latex]] generator of labels== |
||
| + | %Files generated with codes above |
||
| + | %should be loaded in order to compile the code below. |
||
| + | <pre> |
||
| + | \documentclass[12pt]{article} |
||
| + | \paperwidth 2072px |
||
| + | \paperheight 2076px |
||
| + | \textwidth 2394px |
||
| + | \textheight 2300px |
||
| + | \topmargin -97px |
||
| + | \oddsidemargin -78px |
||
| + | \usepackage{graphics} |
||
| + | \usepackage{rotating} |
||
| + | \newcommand \sx {\scalebox} |
||
| + | \newcommand \rot {\begin{rotate}} |
||
| + | \newcommand \ero {\end{rotate}} |
||
| + | \newcommand \ing {\includegraphics} |
||
| + | \newcommand \rmi {\mathrm{i}} |
||
| + | \parindent 0pt |
||
| + | \pagestyle{empty} |
||
| + | \begin{document}\parindent 0pt |
||
| + | \sx{10}{\begin{picture}(206,206) |
||
| + | %\put(6,5){\ing{Esqrt2ite13Map}} |
||
| + | %\put(6,5){\ing{04}} |
||
| + | \put(6,5){\ing{sqrt2diima}} |
||
| + | \put(2,203.4){\sx{.7}{$y$}} |
||
| + | \put(2,184){\sx{.6}{$8$}} |
||
| + | \put(2,164){\sx{.6}{$6$}} |
||
| + | \put(2,144){\sx{.6}{$4$}} |
||
| + | \put(2,124){\sx{.6}{$2$}} |
||
| + | \put(2,104){\sx{.6}{$0$}} |
||
| + | \put(-2.2,84){\sx{.6}{$-2$}} |
||
| + | \put(-2.2,64){\sx{.6}{$-4$}} |
||
| + | \put(-2.2,44){\sx{.6}{$-6$}} |
||
| + | \put(-2.2,24){\sx{.6}{$-8$}} |
||
| + | \put(-2,-1){\sx{.7}{$-\!10$}} |
||
| + | \put( 22,-1){\sx{.7}{$-8$}} |
||
| + | \put( 42,-1){\sx{.7}{$-6$}} |
||
| + | \put( 62,-1){\sx{.7}{$-4$}} |
||
| + | \put( 82,-1){\sx{.7}{$-2$}} |
||
| + | \put(106,-1){\sx{.7}{$0$}} |
||
| + | \put(126,-1){\sx{.7}{$2$}} |
||
| + | \put(146,-1){\sx{.7}{$4$}} |
||
| + | \put(166,-1){\sx{.7}{$6$}} |
||
| + | \put(186,-1){\sx{.7}{$8$}} |
||
| + | \put(204,-1){\sx{.7}{$x$}} |
||
| + | \put(174,103.5){\sx{.99}{\bf cut}} |
||
| + | \put(118,172.3){\sx{.99}{\rot{-16}$v\!=\!3$\ero}} |
||
| + | %\put(146,135){\sx{.99}{\rot{-29}$v\!=\!2$\ero}} |
||
| + | %\put(148,117){\sx{.99}{\rot{-33}$v\!=\!1$\ero}} |
||
| + | \put(125,139){\sx{.99}{\rot{-11}$v\!=\!2$\ero}} |
||
| + | \put(126,118){\sx{.99}{\rot{-3}$v\!=\!1$\ero}} |
||
| + | \put(121,103){\sx{.99}{\rot{6}$v\!=\!0$\ero}} |
||
| + | \put(119,94){\sx{.99}{\rot{3}$v\!=\!-1$\ero}} |
||
| + | % |
||
| + | \put(27,140){\sx{.99}{\rot{-30}$u\!=\!1$\ero}} |
||
| + | \put(91,91){\sx{.99}{\rot{7}$u\!=\!0$\ero}} |
||
| + | % |
||
| + | \put(117,180){\sx{.99}{\rot{74}$u\!=\!2$\ero}} |
||
| + | \put(155,168){\sx{.99}{\rot{58}$u\!=\!3$\ero}} |
||
| + | \put(155,120){\sx{.99}{\rot{55}$u\!=\!4$\ero}} |
||
| + | \end{picture}} |
||
| + | \end{document} |
||
| + | </pre> |
||
| + | ==Refereces== |
||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keywords== |
||
| + | «[[Abelfunction]]», |
||
| + | «[[Arctetration]]», |
||
| + | «[[Base sqrt2]]», |
||
| + | «[[Complex map]]», |
||
| + | «[[Iterate]]», |
||
| + | «[[Inverse function]]», |
||
| + | «[[Lambert Academic Publishing]]», |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | «[[Tetration]]», |
||
| + | |||
| + | «[[Суперфункции]]», |
||
| + | |||
| + | [[Category:Arctetration]] |
||
| + | [[Category:Base sqrt2]] |
||
| + | [[Category:Book]] |
||
| + | [[Category:BookMap]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Complex map]] |
||
| + | [[Category:Iterate]] |
||
| + | [[Category:Inverse function]] |
||
| + | [[Category:Lambert Academic Publishing]] |
||
| + | [[Category:Latex]] |
||
| + | [[Category:Mathematics of Computation]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Tetration]] |
||
Latest revision as of 03:35, 31 December 2025
Fig.16.10 at page 234 of book «Superfunctions»[1]
The same image appears also as Рис.16.11 at page 240 of the Russian version «Суперфункции»[2], 2014.
The picture shows the complex map of iterate number i of exponential to base \(\sqrt{2}\) constructed at its lower ("down") fixed point 2: \[ u\!+\!\mathrm i v= \exp_{\sqrt{2},\mathrm d}(x\!+\!\mathrm i y) \]
The algorithm of the evaluation is also described in «Mathematics of computation»[3], 2010.
C++ generator of the map
/* Files ado.cin, conto.cin, sqrt2f21e.cin sqrt2f21l.cin should be loaded in order to compile the code below.*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#include "conto.cin"
#include "sqrt2f45e.cin"
#include "sqrt2f45l.cin"
#include "sqrt2f21e.cin"
#include "sqrt2f21l.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=801,M1=M+1;
int N=405,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("04.eps","w"); ado(o,202,202);
FILE *o;o=fopen("sqrt2diima.eps","w"); ado(o,202,202);
fprintf(o,"101 101 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-10.+.025*(m-.5);
//DO(n,N1) Y[n]=-10.+.04*(n-.5);
// DO(n,200) Y[n]=sinh(3.*(n-200.5)/200.);
// DO(n,200) Y[n]=-10.+.05*(n-.5);
// Y[200]=-.0001;
// Y[201]= .0001;
for(n=0;n<N1;n++) Y[n]=.25*sinh(4.33*(n-202.5)/200.);
// for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-2);
for(m=-10;m<11;m++) {M(m,-10)L(m,10)}
for(n=-10;n<11;n++) {M( -10,n)L(10,n)}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
fprintf(o," .006 W 0 0 0 RGB S\n");
// z_type tm,tp,F[M1*N1];
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DO(m,M1){x=X[m];
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=F21L(z) + z_type(0.,1.); c=F21E(c);
p=Re(c);
q=Im(c);
if(p>-201. && p<201. && q>-201. && q<201.
&& fabs(p)>1.e-14
&& fabs(q)>1.e-14
) { g[m*N1+n]=p; f[m*N1+n]=q;}
}}
p=2; q=.5;
for(m=-10;m<10;m++)for(n=2 ;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q); fprintf(o,".014 W 0 .7 0 RGB S\n");
for(m=0;m<11;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q); fprintf(o,".014 W 1 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q); fprintf(o,".014 W 0 0 1 RGB S\n");
for(m= 1;m<40;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".03 W .8 0 0 RGB S\n");
for(m= 1;m<40;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".03 W 0 0 .8 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-2*p,2*p); fprintf(o,".03 W .5 0 .5 RGB S\n");
for(m=-40;m<41;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".03 W 0 0 0 RGB S\n");
// #include "plofu.cin"
M(10,0)L(4,0)fprintf(o,"0 setlinecap .036 W 1 1 1 RGB S\n");
for(n=0;n<17;n++){ M(4+.5*(n+.2),0) L(4+.5*(n+.4),0) } fprintf(o,".06 W 1 .5 0 RGB S\n");
for(n=0;n<17;n++){ M(4+.5*(n+.7),0) L(4+.5*(n+.9),0) } fprintf(o,".06 W 0 .5 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf sqrt2diima.eps");
system( "open sqrt2diima.pdf"); //for macintosh
}
Latex generator of labels
%Files generated with codes above %should be loaded in order to compile the code below.
\documentclass[12pt]{article}
\paperwidth 2072px
\paperheight 2076px
\textwidth 2394px
\textheight 2300px
\topmargin -97px
\oddsidemargin -78px
\usepackage{graphics}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \rmi {\mathrm{i}}
\parindent 0pt
\pagestyle{empty}
\begin{document}\parindent 0pt
\sx{10}{\begin{picture}(206,206)
%\put(6,5){\ing{Esqrt2ite13Map}}
%\put(6,5){\ing{04}}
\put(6,5){\ing{sqrt2diima}}
\put(2,203.4){\sx{.7}{$y$}}
\put(2,184){\sx{.6}{$8$}}
\put(2,164){\sx{.6}{$6$}}
\put(2,144){\sx{.6}{$4$}}
\put(2,124){\sx{.6}{$2$}}
\put(2,104){\sx{.6}{$0$}}
\put(-2.2,84){\sx{.6}{$-2$}}
\put(-2.2,64){\sx{.6}{$-4$}}
\put(-2.2,44){\sx{.6}{$-6$}}
\put(-2.2,24){\sx{.6}{$-8$}}
\put(-2,-1){\sx{.7}{$-\!10$}}
\put( 22,-1){\sx{.7}{$-8$}}
\put( 42,-1){\sx{.7}{$-6$}}
\put( 62,-1){\sx{.7}{$-4$}}
\put( 82,-1){\sx{.7}{$-2$}}
\put(106,-1){\sx{.7}{$0$}}
\put(126,-1){\sx{.7}{$2$}}
\put(146,-1){\sx{.7}{$4$}}
\put(166,-1){\sx{.7}{$6$}}
\put(186,-1){\sx{.7}{$8$}}
\put(204,-1){\sx{.7}{$x$}}
\put(174,103.5){\sx{.99}{\bf cut}}
\put(118,172.3){\sx{.99}{\rot{-16}$v\!=\!3$\ero}}
%\put(146,135){\sx{.99}{\rot{-29}$v\!=\!2$\ero}}
%\put(148,117){\sx{.99}{\rot{-33}$v\!=\!1$\ero}}
\put(125,139){\sx{.99}{\rot{-11}$v\!=\!2$\ero}}
\put(126,118){\sx{.99}{\rot{-3}$v\!=\!1$\ero}}
\put(121,103){\sx{.99}{\rot{6}$v\!=\!0$\ero}}
\put(119,94){\sx{.99}{\rot{3}$v\!=\!-1$\ero}}
%
\put(27,140){\sx{.99}{\rot{-30}$u\!=\!1$\ero}}
\put(91,91){\sx{.99}{\rot{7}$u\!=\!0$\ero}}
%
\put(117,180){\sx{.99}{\rot{74}$u\!=\!2$\ero}}
\put(155,168){\sx{.99}{\rot{58}$u\!=\!3$\ero}}
\put(155,120){\sx{.99}{\rot{55}$u\!=\!4$\ero}}
\end{picture}}
\end{document}
Refereces
- ↑ http://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020,
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. - ↑
http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html
http://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf offprint D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
Keywords
«Abelfunction», «Arctetration», «Base sqrt2», «Complex map», «Iterate», «Inverse function», «Lambert Academic Publishing», «Superfunction», «Superfunctions», «Tetration»,
«Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:14, 1 December 2018 | 2,302 × 2,306 (1.27 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.