Difference between revisions of "File:SuZexD1mapT.png"
(Importing image file) |
|||
| Line 1: | Line 1: | ||
| + | [[Complex map]] of function [[SuZex]], which is entire [[superfunction]] of [[Zex]], $\mathrm{zex}(z)=z\exp(z)$. |
||
| − | Importing image file |
||
| + | |||
| + | $u\!+\!\mathrm i v = \mathrm{SuZex}(c\!+\!\mathrm i y)$ |
||
| + | |||
| + | [[SuZex]] is built-up at the fixed point zero from asymptotic behavior; the approximation below is implemented: |
||
| + | :$\!\!\!\!\!\!\!\!\! (1) ~ ~ ~ \displaystyle |
||
| + | f(z)= \frac{-1}{z} +\frac{ \ln(-z)}{2 z^2}+ \frac{-.05\ln(-z)^2-.02\ln(-z)-.4}{z^3}$ |
||
| + | For integer $n$, |
||
| + | :$\!\!\!\!\!\!\!\!\!\! (2) ~ ~ ~ \displaystyle |
||
| + | F_n(z)=\mathrm{zex}^n\Big( z\!-\!n) \Big)$ |
||
| + | The constant $x_n$ is chosen as solution of equation $F_n(x_n)\!=\!1$. Then, the superfunction is evaluated as iteration |
||
| + | :$\!\!\!\!\!\!\!\!\!\! (2) ~ ~ ~ \displaystyle |
||
| + | \mathrm{SuZex}(z)=F_n(x_n\!+\!z)$ |
||
| + | for integer $n$. |
||
| + | |||
| + | The generator below uses value $n\!=\!16$, which is sufficient to get the camera-ready copy. For the precise computation, more terms in the expansion (1) should be calculated. |
||
| + | The precise implementation (with 14 decimal digits) is loaded as [[SuZex.cin]]. |
||
| + | |||
| + | ==[[C++]] generator of curves== |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | using namespace std; |
||
| + | #include<complex> |
||
| + | typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "conto.cin" |
||
| + | // #include "fsexp.cin" |
||
| + | //#include "fslog.cin" |
||
| + | |||
| + | z_type zex(z_type z){ return z*exp(z);} |
||
| + | |||
| + | int Nitera=16; |
||
| + | |||
| + | z_type suzex0b(z_type z){ return -1./z; } |
||
| + | // z_type suzex0(z_type z){ z_type L=log(-z); return (-1.+.5*L/z)/z; } |
||
| + | z_type suzex0(z_type z){ z_type L=log(-z); return (-1.+(.5*L + (-.05*L*L-.02*L-.4)/z)/z)/z; } |
||
| + | |||
| + | z_type suzexn(int n, z_type z){int m; z-=0.+n; z=suzex0(z); DO(m,n) z=zex(z); return z; } |
||
| + | |||
| + | main(){ int j,k,m,n; DB x1,x,y, p,q, t; z_type z,c,d, cu,cd; |
||
| + | x1=-1.04; |
||
| + | DO(n,18){ y=Re(suzexn(Nitera,x1)); x=y-1.; x1-=1.5*x; printf("%18.16f %18.16f\n", x1,y);} |
||
| + | getchar(); |
||
| + | |||
| + | int M=601,M1=M+1; |
||
| + | int N=401,N1=N+1; |
||
| + | DB X[M1],Y[N1]; |
||
| + | DB *g, *f, *w; // w is working array. |
||
| + | g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); |
||
| + | f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); |
||
| + | w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); |
||
| + | char v[M1*N1]; // v is working array |
||
| + | FILE *o;o=fopen("suZexMap.eps","w"); ado(o,1202,1202); |
||
| + | fprintf(o,"601 601 translate\n 100 100 scale\n"); |
||
| + | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
| + | DO(m,M1) X[m]=-6.+.02*(m-.1); |
||
| + | //DO(n,N1) Y[n]=-5.+.02*(n-.5); |
||
| + | for(n=0;n<N1;n++) { Y[n]=0.6*sinh((3./200.)*(n-200.5)); printf("%3d %9.6f\n",n,Y[n]); } |
||
| + | for(m=-6;m<7;m++) {M(m,-6)L(m,6)} |
||
| + | for(n=-6;n<7;n++) {M( -6,n)L(6,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
| + | DO(m,M1)DO(n,N1){ g[m*N1+n]=999; |
||
| + | f[m*N1+n]=999;} |
||
| + | DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x); |
||
| + | DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019) |
||
| + | { |
||
| + | c=suzexn(Nitera,z+x1); |
||
| + | p=Re(c); q=Im(c); |
||
| + | if(p>-19 && p<19 && fabs(q)>1.e-12 && fabs(p)>1.e-12) g[m*N1+n]=p; |
||
| + | if(p>-19 && p<19 && fabs(q)>1.e-12 && fabs(p)>1.e-12) f[m*N1+n]=q; |
||
| + | } |
||
| + | }} |
||
| + | fprintf(o,"1 setlinejoin 1 setlinecap\n"); |
||
| + | p=2.;q=.3; |
||
| + | |||
| + | for(m=-8;m<8;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n"); |
||
| + | for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n"); |
||
| + | for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n"); |
||
| + | for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".02 W .8 0 0 RGB S\n"); |
||
| + | for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".02 W 0 0 .8 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n"); |
||
| + | for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".02 W 0 0 0 RGB S\n"); |
||
| + | |||
| + | //#include "plofu.cin" |
||
| + | fprintf(o,"0 setlinejoin 0 setlinecap\n"); |
||
| + | fprintf(o,"showpage\n"); |
||
| + | fprintf(o,"%c%cTrailer\n",'%','%'); |
||
| + | fclose(o); free(f); free(g); free(w); |
||
| + | system("epstopdf SuZexMap.eps"); |
||
| + | system( "open SuZexMap.pdf"); //for macintosh |
||
| + | getchar(); system("killall Preview"); // For macintosh |
||
| + | } |
||
| + | |||
| + | |||
| + | ==[[Latex]] generator of labels== |
||
| + | |||
| + | % <nowiki> %<br> |
||
| + | \documentclass[12pt]{article} % <br> |
||
| + | \paperheight 1228px % <br> |
||
| + | \paperwidth 1236px % <br> |
||
| + | \textwidth 1394px % <br> |
||
| + | \textheight 1300px % <br> |
||
| + | \topmargin -104px % <br> |
||
| + | \oddsidemargin -78px % <br> |
||
| + | \usepackage{graphics} % <br> |
||
| + | \usepackage{rotating} % <br> |
||
| + | \newcommand \sx {\scalebox} % <br> |
||
| + | \newcommand \rot {\begin{rotate}} % <br> |
||
| + | \newcommand \ero {\end{rotate}} % <br> |
||
| + | \newcommand \ing {\includegraphics} % <br> |
||
| + | \newcommand \rmi {\mathrm{i}} % <br> |
||
| + | \begin{document} % <br> |
||
| + | \newcommand \zoomax { % <br> |
||
| + | \put(18,1206){\sx{3.3}{$y$}} % <br> |
||
| + | \put(18,1113){\sx{3}{$5$}} % <br> |
||
| + | \put(18,1013){\sx{3}{$4$}} % <br> |
||
| + | \put(18, 913){\sx{3}{$3$}} % <br> |
||
| + | \put(18, 813){\sx{3}{$2$}} % <br> |
||
| + | \put(18, 713){\sx{3}{$1$}} % <br> |
||
| + | \put(18, 613){\sx{3}{$0$}} % <br> |
||
| + | \put(-6, 513){\sx{3}{$-1$}} % <br> |
||
| + | \put(-6, 413){\sx{3}{$-2$}} % <br> |
||
| + | \put(-6, 313){\sx{3}{$-3$}} % <br> |
||
| + | \put(-6, 213){\sx{3}{$-4$}} % <br> |
||
| + | \put(-6, 113){\sx{3}{$-5$}} % <br> |
||
| + | \put(-6, 013){\sx{3}{$-6$}} % <br> |
||
| + | \put(014, -5){\sx{3}{$-6$}} % <br> |
||
| + | \put(114, -5){\sx{3}{$-5$}} % <br> |
||
| + | \put(214, -5){\sx{3}{$-4$}} % <br> |
||
| + | \put(314, -5){\sx{3}{$-3$}} % <br> |
||
| + | \put(414, -5){\sx{3}{$-2$}} % <br> |
||
| + | \put(514, -5){\sx{3}{$-1$}} % <br> |
||
| + | \put(635, -5){\sx{3}{$0$}} % <br> |
||
| + | \put(735, -5){\sx{3}{$1$}} % <br> |
||
| + | \put(835, -5){\sx{3}{$2$}} % <br> |
||
| + | \put(935, -5){\sx{3}{$3$}} % <br> |
||
| + | \put(1035, -5){\sx{3}{$4$}} % <br> |
||
| + | \put(1135, -5){\sx{3}{$5$}} % <br> |
||
| + | \put(1227,-4){\sx{3}{$x$}} % <br> |
||
| + | } % <br> |
||
| + | \parindent 0pt % <br> |
||
| + | \sx{1}{\begin{picture}(1252,1220) % <br> |
||
| + | %\put(40,20){\ing{b271tMap3}} % <br> |
||
| + | %\put(40,20){\ing{ExpMap}} % <br> |
||
| + | \put(40,20){\ing{SuZexMap}} % <br> |
||
| + | \zoomax % <br> |
||
| + | \put(290,611){\sx{4}{$v\!=\!0$}} % <br> |
||
| + | \put(183,560){\sx{4}{\rot{90}$u\!=\!0.2$\ero}} % <br> |
||
| + | \put(468,560){\sx{4}{\rot{90}$u\!=\!0.4$\ero}} % <br> |
||
| + | \put(696,118){\sx{4}{\rot{83}$u\!=\!0$\ero}} %<br> |
||
| + | \put(980,236){\sx{4}{\rot{24}$u\!=\!-0.2$\ero}} %<br> |
||
| + | \put(790, 44){\sx{4}{\rot{38}$v\!=\!-0.2$\ero}} %<br> |
||
| + | \end{picture}} % <br> |
||
| + | \end{document} % <br> |
||
| + | </nowiki> |
||
| + | |||
| + | [[Category:SuZex]] |
||
| + | [[Category:Zex]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Regular iteration]] |
||
Revision as of 09:43, 21 June 2013
Complex map of function SuZex, which is entire superfunction of Zex, $\mathrm{zex}(z)=z\exp(z)$.
$u\!+\!\mathrm i v = \mathrm{SuZex}(c\!+\!\mathrm i y)$
SuZex is built-up at the fixed point zero from asymptotic behavior; the approximation below is implemented:
- $\!\!\!\!\!\!\!\!\! (1) ~ ~ ~ \displaystyle
f(z)= \frac{-1}{z} +\frac{ \ln(-z)}{2 z^2}+ \frac{-.05\ln(-z)^2-.02\ln(-z)-.4}{z^3}$ For integer $n$,
- $\!\!\!\!\!\!\!\!\!\! (2) ~ ~ ~ \displaystyle
F_n(z)=\mathrm{zex}^n\Big( z\!-\!n) \Big)$ The constant $x_n$ is chosen as solution of equation $F_n(x_n)\!=\!1$. Then, the superfunction is evaluated as iteration
- $\!\!\!\!\!\!\!\!\!\! (2) ~ ~ ~ \displaystyle
\mathrm{SuZex}(z)=F_n(x_n\!+\!z)$ for integer $n$.
The generator below uses value $n\!=\!16$, which is sufficient to get the camera-ready copy. For the precise computation, more terms in the expansion (1) should be calculated. The precise implementation (with 14 decimal digits) is loaded as SuZex.cin.
C++ generator of curves
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include<complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin" // #include "fsexp.cin" //#include "fslog.cin"
z_type zex(z_type z){ return z*exp(z);}
int Nitera=16;
z_type suzex0b(z_type z){ return -1./z; }
// z_type suzex0(z_type z){ z_type L=log(-z); return (-1.+.5*L/z)/z; }
z_type suzex0(z_type z){ z_type L=log(-z); return (-1.+(.5*L + (-.05*L*L-.02*L-.4)/z)/z)/z; }
z_type suzexn(int n, z_type z){int m; z-=0.+n; z=suzex0(z); DO(m,n) z=zex(z); return z; }
main(){ int j,k,m,n; DB x1,x,y, p,q, t; z_type z,c,d, cu,cd;
x1=-1.04;
DO(n,18){ y=Re(suzexn(Nitera,x1)); x=y-1.; x1-=1.5*x; printf("%18.16f %18.16f\n", x1,y);}
getchar();
int M=601,M1=M+1;
int N=401,N1=N+1;
DB X[M1],Y[N1];
DB *g, *f, *w; // w is working array.
g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
char v[M1*N1]; // v is working array
FILE *o;o=fopen("suZexMap.eps","w"); ado(o,1202,1202);
fprintf(o,"601 601 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
DO(m,M1) X[m]=-6.+.02*(m-.1);
//DO(n,N1) Y[n]=-5.+.02*(n-.5);
for(n=0;n<N1;n++) { Y[n]=0.6*sinh((3./200.)*(n-200.5)); printf("%3d %9.6f\n",n,Y[n]); }
for(m=-6;m<7;m++) {M(m,-6)L(m,6)}
for(n=-6;n<7;n++) {M( -6,n)L(6,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=999;
f[m*N1+n]=999;}
DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019)
{
c=suzexn(Nitera,z+x1);
p=Re(c); q=Im(c);
if(p>-19 && p<19 && fabs(q)>1.e-12 && fabs(p)>1.e-12) g[m*N1+n]=p;
if(p>-19 && p<19 && fabs(q)>1.e-12 && fabs(p)>1.e-12) f[m*N1+n]=q;
}
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n");
p=2.;q=.3;
for(m=-8;m<8;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".02 W .8 0 0 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".02 W 0 0 .8 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n");
for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".02 W 0 0 0 RGB S\n");
//#include "plofu.cin"
fprintf(o,"0 setlinejoin 0 setlinecap\n");
fprintf(o,"showpage\n");
fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o); free(f); free(g); free(w);
system("epstopdf SuZexMap.eps");
system( "open SuZexMap.pdf"); //for macintosh
getchar(); system("killall Preview"); // For macintosh
}
Latex generator of labels
% %<br> \documentclass[12pt]{article} % <br> \paperheight 1228px % <br> \paperwidth 1236px % <br> \textwidth 1394px % <br> \textheight 1300px % <br> \topmargin -104px % <br> \oddsidemargin -78px % <br> \usepackage{graphics} % <br> \usepackage{rotating} % <br> \newcommand \sx {\scalebox} % <br> \newcommand \rot {\begin{rotate}} % <br> \newcommand \ero {\end{rotate}} % <br> \newcommand \ing {\includegraphics} % <br> \newcommand \rmi {\mathrm{i}} % <br> \begin{document} % <br> \newcommand \zoomax { % <br> \put(18,1206){\sx{3.3}{$y$}} % <br> \put(18,1113){\sx{3}{$5$}} % <br> \put(18,1013){\sx{3}{$4$}} % <br> \put(18, 913){\sx{3}{$3$}} % <br> \put(18, 813){\sx{3}{$2$}} % <br> \put(18, 713){\sx{3}{$1$}} % <br> \put(18, 613){\sx{3}{$0$}} % <br> \put(-6, 513){\sx{3}{$-1$}} % <br> \put(-6, 413){\sx{3}{$-2$}} % <br> \put(-6, 313){\sx{3}{$-3$}} % <br> \put(-6, 213){\sx{3}{$-4$}} % <br> \put(-6, 113){\sx{3}{$-5$}} % <br> \put(-6, 013){\sx{3}{$-6$}} % <br> \put(014, -5){\sx{3}{$-6$}} % <br> \put(114, -5){\sx{3}{$-5$}} % <br> \put(214, -5){\sx{3}{$-4$}} % <br> \put(314, -5){\sx{3}{$-3$}} % <br> \put(414, -5){\sx{3}{$-2$}} % <br> \put(514, -5){\sx{3}{$-1$}} % <br> \put(635, -5){\sx{3}{$0$}} % <br> \put(735, -5){\sx{3}{$1$}} % <br> \put(835, -5){\sx{3}{$2$}} % <br> \put(935, -5){\sx{3}{$3$}} % <br> \put(1035, -5){\sx{3}{$4$}} % <br> \put(1135, -5){\sx{3}{$5$}} % <br> \put(1227,-4){\sx{3}{$x$}} % <br> } % <br> \parindent 0pt % <br> \sx{1}{\begin{picture}(1252,1220) % <br> %\put(40,20){\ing{b271tMap3}} % <br> %\put(40,20){\ing{ExpMap}} % <br> \put(40,20){\ing{SuZexMap}} % <br> \zoomax % <br> \put(290,611){\sx{4}{$v\!=\!0$}} % <br> \put(183,560){\sx{4}{\rot{90}$u\!=\!0.2$\ero}} % <br> \put(468,560){\sx{4}{\rot{90}$u\!=\!0.4$\ero}} % <br> \put(696,118){\sx{4}{\rot{83}$u\!=\!0$\ero}} %<br> \put(980,236){\sx{4}{\rot{24}$u\!=\!-0.2$\ero}} %<br> \put(790, 44){\sx{4}{\rot{38}$v\!=\!-0.2$\ero}} %<br> \end{picture}} % <br> \end{document} % <br>
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 2,576 × 2,559 (1.04 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: