Difference between revisions of "Sandbox"
m (→Applications) |
|||
| (9 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
{{top}} |
{{top}} |
||
| − | <div class="thumb tright" style="float:right; margin:-72px 0px 8px 18px"> |
||
| − | {{pic|Tetreal10bx10d.png|300px}} |
||
| − | <small><center>\(y=\mathrm{tet}_b(x)\) versos \(x\) for various values of base \(b\).<br> |
||
| − | [[Superfunctions]]<ref name="en"/>, Fig.17.2, p.239.</center></small> |
||
| − | </div> |
||
| − | <div class="thumb tright" style="float:right; background-color:#fff; margin:2px 0px 8px 8px; width:300px; line-height:9px"> |
||
| − | {{pic|Ackerplot.jpg|300px}}<small><center>First five [[ackermann]]s.<!-- [[Natural tetration]] |
||
| − | refers to dashed line.!--><br>[[Superfunctions]]<ref name="en"> |
||
| − | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862<br> |
||
| − | https://mizugadro.mydns.jp/BOOK/468.pdf |
||
| − | Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28 |
||
| − | </ref>, p.266. Fig.19.7. |
||
| − | </div> |
||
| − | <div class="thumb tright" style="float:right; margin:8px 0px 14px 12px; background-color:#fff; width:220px; line-height:11px;"> |
||
| − | {{pic|B271t.png|240px}}<small><center>Map of [[natural tetration]]. |
||
| − | See Figure 4.12 at page 203 of book [[Superfunctions]]<ref name="en"/></center></small> |
||
| − | </div> |
||
| − | [[Tetration]] ([[Тетрация]]) is the [[superfunction]] of the [[exponential]] map. |
||
| − | For a given base \(b\), the tetration \(\operatorname{tet}_b\) is defined as the function satisfying the transfer equation |
||
| − | \[ |
||
| − | \operatorname{tet}_b(z+1) = b^{\operatorname{tet}_b(z)} |
||
| − | \] |
||
| − | together with additional normalization and regularity conditions that select a unique solution among infinitely many possible superfunctions. |
||
| − | For real values of the argunet, the explicit plots of \(\operatorname{tet}_b(x)\) versos \(x\) |
||
| − | for various real values of base \(b\) is shown in figure at right. |
||
| + | [[RedPu]] is a bilingual ([[English]] / [[Russian]]) emulation based on the utopian dialogue |
||
| − | The inverse function [[ArcTetration]] is denoted with symbol ate; \( \mathrm{ate}_b = \mathrm{tet}_b^{-1} \).<br> |
||
| + | presented in the article [[Рыжий Пу]]. |
||
| − | The iterates of [[Exponential]] can be expressed as follows: |
||
| − | \( |
||
| − | \exp_b^{\ n}=\operatorname{tet}_b\big(n+\operatorname{ate}_b(z)\big) |
||
| − | \). |
||
| − | Here, number \(n\) of the iterate has no need to be integer. In particular, \(\varphi=\exp^{1/2}\) |
||
| − | appears as solution of equation \( \varphi(\varphi(x))=\mathrm e^x \); this equation had been considered by [[Hellmuth Kneser]] <ref name="k"> |
||
| − | http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002175851&physid=phys63#navi |
||
| − | [[Hellmuth Kneser]]. Reelle analytische Lösungen der Gleichung \( \varphi(\varphi(x))=\mathrm e^x \) und verwandter Funktionalgleichungen. |
||
| − | Journal für die reine und angewandte Mathematik / Zeitschriftenband (1950) / Artikel / 56 - 67 |
||
| − | </ref>, 1950. |
||
| + | The emulation is presented in two synchronized language layers. |
||
| − | ==Notations== |
||
| + | The English part reflects the assumption that [[Donald Trump]] does not speak [[Russian]]. |
||
| + | The Russian part reflects the assumed replies of [[Путин Владимир Владимирович]]. |
||
| + | ==Context== |
||
| − | The name [[tetration]] reflects its role as the next operation after exponentiation within the [[hyperoperation]] hierarchy:<br> |
||
| − | [[Ackermann]]\(_1\), id est, the [[Addition]] appears as [[superfunction]] of [[unity increment]];<br> |
||
| − | [[Ackermann]]\(_2\), id est, the [[Multiplication]] appears as [[superfunction]] of additon; <br> |
||
| − | [[Ackermann]]\(_3\), id est, the [[Exponential]] \(\exp\) appears as [[superfunction]] of multiplication;<br> |
||
| − | [[Ackermann]]\(_4\), id est, the [[Tetration]] \(\mathrm{tet}\) appears as [[superfunction]] of [[exponential]];<br> |
||
| − | [[Ackermann]]\(_5\), id est, the [[Pentation]] \(\mathrm{pen}\) appears as [[superfunction]] of [[tetration]];<br> |
||
| − | and so on. These functions are qualified as [[ackermann]]s after the last name of |
||
| − | mathematician [[Wilhelm Ackermann]]. |
||
| + | The emulation develops the theme of “radioactive ash” («радиоактивный пепел»), |
||
| − | The most studied case is the [[Natural tetration]] |
||
| + | introduced into Russian political discourse in 2014 by |
||
| − | <ref name="analuxp"> |
||
| + | [[Киселёв Дмитрий Константинович]]. |
||
| − | https://www.ams.org/journals/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br> |
||
| − | http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf |
||
| − | Dmitrii Kouznetsov. Solution of F(z+1)=exp(F(z)) in complex z-plane. |
||
| − | Mathematics of Computation, 2009, V.78, p.1647-1670. |
||
| − | </ref><ref name="vladi"> |
||
| − | https://mizugadro.mydns.jp/PAPERS/2010vladie.pdf<br> |
||
| − | https://www.vmj.ru/articles/2010_2_4.pdf <br> |
||
| − | https://mizugadro.mydns.jp/PAPERS/2010_2_4.pdf |
||
| − | D.Kouznetsov. Tetration as special function. (In Rusian) [[Vladikavkaz Mathematical Journal]], 2010, v.12, issue 2, p.31-45. |
||
| − | </ref>. It corresponds to base \(b=\mathrm e\); it can be written simply as |
||
| − | \[ |
||
| − | \operatorname{tet}(z)=\operatorname{tet}_{\mathrm e}(z). |
||
| − | \] |
||
| − | For base \(\mathrm e\) the first five [[ackermann]]s are shown in figure at right.<br> |
||
| − | The dashed line refers to the [[natural tetration]]. |
||
| + | The text below is not a prediction, not a plan, and not a call to action. |
||
| − | In such a way, all the [[ackermann]]s are numerated. <br> |
||
| + | It is a [[утопия]] / [[emulation]] constructed for analytical and illustrative purposes. |
||
| − | In notation [[Ackermann]]\(_m (z)\), the number \(m\) is supposed to be positive integer (natural number). <br> |
||
| − | To year 2025, the generalization of [[Ackermann]]\(_m(z)\) for non-integer values of \(m\) is not yet developed. |
||
| − | However, the argument \(z\) may have complex values. |
||
| + | ==Dialogue / Диалог== |
||
| − | ==Definition== |
||
| + | <poem> |
||
| − | Let \(T_b(z)=b^z\). |
||
| + | **Trump (English):** |
||
| − | A function \(F\) is a ''[[superexponential]]'' (a [[superfunction]] of \(T_b\)) if |
||
| + | Hello, Mister Putin. |
||
| − | \[ |
||
| − | F(z+1) = T_b(F(z)). |
||
| − | \] |
||
| + | **Путин (Russian):** |
||
| − | A [[tetration]] to real base \(b\) is real-holomorphic superexponential \(F\) |
||
| + | Здравствуйте, мистер Трамп. |
||
| − | such that \(F(x+\mathrm i y)\) remains bounded at \(y\to\pm\infty\) and \(F(0)=1\). |
||
| + | **Trump:** |
||
| − | Such a solution is believed to exists and to be unique <ref> |
||
| + | One of your television hosts once said that Russia could turn the United States |
||
| − | https://link.springer.com/article/10.1007/s00010-010-0021-6 |
||
| + | into radioactive ash. Is that statement correct? |
||
| − | https://mizugadro.mydins.jp/2011uniabel.pdf |
||
| − | H.Trappmann, D.Kouznetsov. Uniqueness of holomorphic Abel functions at a complex fixed point pair. |
||
| − | [[Aequationes Mathematicae]], v.81, p.65-76 (2011) |
||
| − | </ref><ref> |
||
| − | https://math.stackexchange.com/questions/284868/uniqueness-of-tetration |
||
| − | Let 𝑓(0)=1 |
||
| − | and 𝑓(𝑥+1)=2^𝑓(𝑥) // |
||
| − | Also let f be infinitely differentiable. Then does f exist and is it unique? // |
||
| − | If f is merely continuous, then any continuous function such that f(0)=1 f(1)=2 satisfies the conditions(if f is defined in [0,1] ,we can use the property to define it everywhere else). Similar things can be said for differentiability. But I don't how to solve the problem if it's infinitely differentiable. |
||
| − | </ref>. |
||
| + | **Путин:** |
||
| − | ==Special cases== |
||
| + | Он действительно так сказал. Да. |
||
| − | <div class="thumb tright" style="float:right; margin:-6px 0px 4px 8px; background-color:#fff; width:480px; line-height:8px;"> |
||
| − | {{pic|E1efig09abc1a150.png|480px}}<small><center>[[Complex map]]s of [[tetration]] \(\mathrm{tet}_b\) to base \(b\!=\!1.5\) , left; \(b\!=\!\exp(1/\mathrm e)\) , center and \(b\!=\!\sqrt{2}\) , right.<br> |
||
| − | From: Fig.17.4, p.245 in [[Superfunctions]] <ref name="en"/></center></small> |
||
| − | </div> |
||
| − | <div class="thumb tright" style="float:right; margin:4px 0px 8px 8px"> |
||
| − | {{pic|Tetsheldonmap03.png|480px}}<small><center>[[Tetration to Sheldon base]]. [[Superfunctions]], p.250, top picture of Fig.18.3.</center></small> |
||
| − | </div> |
||
| + | **Trump:** |
||
| − | [[Decimal tetration]], \(b=10\). The routine for the evaluation is loaded as [[F4ten.cin]]. |
||
| + | So Russia *can* do that? |
||
| − | It is used to plot the top picture. |
||
| + | **Путин:** |
||
| − | [[Natural tetration]], \(b=\mathrm e\). The [[complex map]] for this case is shown in figure above. The original description <ref name="analuxp"/> and the fast C++ implementation <ref name=vladie"> |
||
| + | Может. |
||
| − | https://www.emis.ams.org/journals/VMJ/articles/2010_2_4.pdf <br> |
||
| − | https://mizugadro.mydns.jp/PAPERS/2010_2_4.pdf<br> |
||
| − | https://mizugadro.mydns.jp/PAPERS/2010vladie.pdf<br> |
||
| − | Д.Кузнецов. Тетрация как специальная функция. Владикавказский математический журнал, 2010, т.12, вып. 2, стр.31-45.<br> |
||
| − | D.Kouznetsov, Tetration as special function. Vladikavkaz Mathematical Journal, 2010, |
||
| − | v.12, Issue 2, p.33-45. |
||
| − | </ref> are published and mentioned in book [[Superfunctions]] <ref name="en"/> |
||
| + | **Trump:** |
||
| − | [[Binary tetration]], \(b=2\), see [[Base 2]] |
||
| + | Thank you. That answer is sufficient. |
||
| + | **Путин:** |
||
| − | [[tetration to base 1.5]], see [[Base 1.5]] |
||
| + | Для чего вам это? |
||
| + | **Trump:** |
||
| − | [[Crytical tetration]], \(b= \mathrm e^{1/\mathrm e}\), see [[Base e1e]] |
||
| + | To justify a decision currently being voted on by Congress. |
||
| + | **Путин:** |
||
| − | [[Tetration to base sqrt2]], \(b= \sqrt{2}\), see [[Base sqrt2]] |
||
| + | Какое решение? |
||
| + | **Trump:** |
||
| − | [[Tetration to Sheldon base]] \(b=1.52598338517+0.0178411853321\ \mathrm i\). |
||
| + | About Russia. |
||
| − | The original algorithm <ref name="analuxp"/> allows the straight-forward generalization for the case of complex values of base \(b\). After the request by [[Sheldon Levenstain]], the complex map of this tetration had been generated; it is shown in figure at right. |
||
| + | **Путин:** |
||
| − | ==Continuity at base b=exp(1/e)== |
||
| + | И вы решили меня предупредить? |
||
| − | <div class="thumb tright" style="float:right; margin:0 0 8px 8px; width:280px; line-height:10px"> |
||
| − | {{pic|BlackSheep.png|280px}} |
||
| − | <small><center>"half-sheep" illustration. [[Суперфункции]]<ref name="ru"> |
||
| − | https://mizugadro.mydns.jp/BOOK/202.pdf |
||
| − | Дмитрий Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014 |
||
| − | </ref>, p.218, Fig.15.6; [[Superfunctions]] <ref name="en"/>, p.215, Fig.15.6</center></small> |
||
| − | </div> |
||
| + | **Trump:** |
||
| − | This cartoon at right illustrates a philosophical point in tetration theory:<br> |
||
| + | Yes. We prefer transparency. |
||
| − | <b>"The only we may conclude, that in this county, there is at least one sheep, |
||
| + | You may want to warn the personnel at your launch facilities. |
||
| − | and at least the right-hand side of this animal is black"</b>. <br> |
||
| − | The heuristic assumptions that appear “obvious’’ (e.g., that the right side of a sheep has the same color as its left side) appears without rigorous proof and, from point of a mathematician, may happen to be wrong. |
||
| + | **Путин:** |
||
| − | The similar heuristic assumption refers to the continuity of [[tetration]] \(\mathrm{tet}_b(z) \) being considered as function of base \(b\) at point \(b=\exp(1/\mathrm e)\). |
||
| + | Зачем? |
||
| + | **Trump:** |
||
| − | The maps above for \(b=1.5\), \(b=\exp(1/\mathrm e)\approx 1.44\) and \(b=\sqrt{2}\approx 1.41\) |
||
| + | Because we are about to demonstrate that Mr. Kiselev was mistaken. |
||
| − | as well as the explicit plot at the top make an impression, that the [[tetration]] is continuous and perhaps holomorphic with respect to \(b\) at this point: the variation in the 3d significant figure causes small change of the view of the curves; at least for moderate valies of argument \(z\) |
||
| + | **Путин:** |
||
| − | As in the case of the sheep in the cartoon, this assumptions about tetration |
||
| + | В чём именно? |
||
| − | is not obvious and require careful justification. |
||
| + | **Trump:** |
||
| − | The prelimninary numerical analysis indicates, that |
||
| + | In assuming that only Russia can turn others into ash. |
||
| − | \(tet_b(z)\) for \(\Re(b)<\exp(1/\mathrm e)\) |
||
| − | is not analytical extension of |
||
| − | \(tet_b(z)\) for \(\Re(b)>\exp(1/\mathrm e)\); |
||
| − | in the simplest way, the cut line along line \(\Re(b)=\exp(1/\mathrm e)\) |
||
| − | divides the complex plane to two almost independent parts, |
||
| − | and only in point \(Re(b)=\exp(1/\mathrm e)\), these two tetrqations have the same limiting |
||
| − | tetration. <br> |
||
| − | However, the cut at the complex \(b\)-plane has no need to follow the vertical line \(\Re(b)=\exp(1/\mathrm e)\); but this choice is simplest and has priority (following the last, 6th of the [[TORI axioms]].) |
||
| + | **Путин:** |
||
| − | ==Applications== |
||
| + | Вы хотите сказать, что испугались? |
||
| − | The obvious application of the tetration may refer to representation of huge numbers.<br> |
||
| − | For example the [[Googolplex]] number <ref> |
||
| − | https://en.wikipedia.org/wiki/Googolplex |
||
| − | A '''googolplex''' is the [[large number]] \(10^{10^{100}}\), that is, 10 raised to the power of a [[googol]]. If written out in ordinary [[decimal notation]], it would be 1 followed by a [[googol]] (10<sup>100</sup>) zeroes – a physically impossible number to write explicitly. |
||
| − | </ref> can be expressed as follows: |
||
| − | \[ |
||
| − | 10^{10^{100}}=\mathrm{tet}_{10}^3(2) |
||
| − | \] |
||
| − | However, up to year 2025, Editor have not yet found any [[scientific concept]] |
||
| − | that deals with such a huge number. |
||
| + | **Trump:** |
||
| − | The more realistic application may refer to the approximation of processes that |
||
| + | No. I want to say that intimidation is not a substitute for capability. |
||
| − | grows faster than any polynomial but slower than any exponential. |
||
| − | The non-integer iterates greatly extend the arsenal of functions available for |
||
| − | construction of efficient fits, involving less fitting parameters and/or providing better precision and/or having wider range of approximation. |
||
| + | **Путин:** |
||
| − | The \(n\)-th iterate of the exponential: |
||
| + | Но вы же понимаете, к чему это может привести? |
||
| − | \[ |
||
| − | \exp_b^{\ n}(z) = \operatorname{tet}_b\!\big(n + \operatorname{ate}_b(z)\big), |
||
| − | \] |
||
| − | for real \(n\). One example of such a function is mentioned in the Preamble. |
||
| + | **Trump:** |
||
| − | An additional extension could be generalization of [[ackermann]]\(m\) |
||
| + | Yes. That is precisely why we are having this conversation. |
||
| − | to non-integer values of \(m\), looking for the real-holomorphic solition \(A\) of equations |
||
| − | \[ |
||
| − | A_m(z+1)=A_{m-1}(A_m(z)) \\ |
||
| − | A_2(z)= \mathrm e\ z \\ |
||
| − | Z_m(0)=1 \text{ for } m>2 |
||
| − | \] |
||
| − | treating \(A_m(z)\) as holomorphic function of two variables \(m\) and \(z\).<br> |
||
| − | Such a generalization can be matter for the future research. |
||
| + | **Путин:** |
||
| − | ==References== |
||
| + | И что вы предлагаете? |
||
| − | {{ref}} |
||
| + | **Trump:** |
||
| − | https://www.numdam.org/item?id=BSMF_1919__47__161_0 |
||
| + | We propose to remove the instruments that make such statements possible, |
||
| − | P. Fatou. Sur les ´equations fonctionnelles. Bulletin de la Soci´et´e |
||
| + | while preserving the population and the territory. |
||
| − | Math´ematique de France, 47 (1919), p. 161-271. |
||
| + | **Путин:** |
||
| − | https://eretrandre.org/rb/files/Ackermann1928_126.pdf |
||
| + | Это ультиматум? |
||
| − | Wilhelm Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. [[Mathematische Annalen]] 99, Number 1(1928), Z.118-133. |
||
| + | **Trump:** |
||
| − | <small>https://projecteuclid.org/journals/acta-mathematica/volume-100/issue-3-4/Regular-iteration-of-real-and-complex-functions/10.1007/BF02559539.full |
||
| + | No. An explanation. |
||
| − | </small> |
||
| − | G.Szekeres. Regular iteration of real and complex functions. Acta Mathematica 1958, Volume 100, Issue 3-4, pp 203-258. |
||
| + | **Путин:** |
||
| − | https://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf |
||
| + | А если мы откажемся? |
||
| − | W.Bergweiler. Iteration of meromorphic functions. Bulletin (New Series) of the American Mathematical society, v.29, No.2 (1993) p.151-188. |
||
| + | **Trump:** |
||
| − | https://www.tandfonline.com/doi/full/10.1080/10652460500422247 |
||
| + | Then the explanation will be repeated, |
||
| − | M.H.Hooshmand, (2006). Ultra power and ultra exponential functions. Integral [[Transforms and Special Functions]] 17 (8): 549–558 |
||
| + | using a language that does not require interpreters. |
||
| + | **Путин:** |
||
| − | https://www.proquest.com/openview/cb7af40083915e275005ffca4bfd4685/1?pq-origsite=gscholar&cbl=18750 |
||
| + | Вы угрожаете? |
||
| − | [[Samuel Cowgill]]. EXPLORING TETRATION IN THE COMPLEX PLANE |
||
| − | EXPLORING TETRATION IN THE COMPLEX PLANE |
||
| − | A Thesis presented to the faculty of Arkansas State University in partial. |
||
| − | fulfillment of the requirements for the Degree of |
||
| − | MASTER OF SCIENCE IN MATHEMATICS |
||
| − | ARKANSAS STATE UNIVERSITY //MAY 2017 |
||
| − | Approved by: |
||
| − | Dr. [[William Paulsen]], Thesis Advisor |
||
| − | Dr. [[Jie Miao]], Committee Member |
||
| − | Dr. [[Jeongho Ahn]], Committee MemberPREVIE |
||
| + | **Trump:** |
||
| − | https://link.springer.com/article/10.1007/s10444-018-9615-7 |
||
| + | No. Threats are what television hosts do. |
||
| − | William Paulsen. Tetration for complex bases. |
||
| + | We deal with accountability. |
||
| − | Advances in Computational Mathematics. |
||
| − | Published: 02 June 2018// |
||
| − | Volume 45, pages 243–267, (2019) |
||
| + | **Путин:** |
||
| − | https://www.researchgate.net/publication/325532999_Tetration_for_complex_bases |
||
| + | Вы уверены, что контролируете последствия? |
||
| − | <br> |
||
| − | https://www.researchgate.net/figure/Level-curves-for-Rk-b-z-and-Ik-b-z-0-1-2-3-4-for-b-i_fig1_325532999 |
||
| − | [[William Harold Paulsen]]. Tetration for complex bases. |
||
| − | Advances in Computational Mathematics 45(6), |
||
| − | February 2019 |
||
| − | DOI:10.1007/s10444-018-9615-7 |
||
| + | **Trump:** |
||
| − | http://myweb.astate.edu/wpaulsen/tetration2.pdf |
||
| + | We control our actions. |
||
| − | [[William Paulsen]] and [[Samuel Cowgil]]. |
||
| + | You control whether your system survives the truth about itself. |
||
| − | Solving F(z+1)=bF(z) in the complex plane. |
||
| + | **Путин:** |
||
| + | А если народ не поймёт? |
||
| + | |||
| + | **Trump:** |
||
| + | Then it will finally hear something other than myths. |
||
| + | |||
| + | **Путин:** |
||
| + | Вы уверены, что после этого всё закончится? |
||
| + | |||
| + | **Trump:** |
||
| + | Nothing “ends”. |
||
| + | Some things simply stop working. |
||
| + | |||
| + | **Путин:** |
||
| + | Например? |
||
| + | |||
| + | **Trump:** |
||
| + | For example, the belief that shouting about ash |
||
| + | protects those who shout. |
||
| + | |||
| + | **Путин:** |
||
| + | И что будет со мной? |
||
| + | |||
| + | **Trump:** |
||
| + | That depends on whether you prefer to be a witness |
||
| + | or an exhibit. |
||
| + | |||
| + | **Путин:** |
||
| + | Это не разговор по телефону. |
||
| + | |||
| + | **Trump:** |
||
| + | Agreed. |
||
| + | That is why this is the last phone call. |
||
| + | |||
| + | **Путин:** |
||
| + | Когда мы увидимся? |
||
| + | |||
| + | **Trump:** |
||
| + | Soon enough. |
||
| + | </poem> |
||
| + | <!-- |
||
| + | In a setting where interpreters will still be present, |
||
| + | but excuses will not. |
||
| + | |||
| + | (The dialogue continues conceptually as in [[Рыжий Пу]], |
||
| + | with emphasis on non-nuclear demilitarization, |
||
| + | personal responsibility of decision-makers, |
||
| + | and the collapse of performative intimidation.) |
||
| + | !--> |
||
| + | ==Interpretation== |
||
| + | |||
| + | The bilingual form highlights an asymmetry: |
||
| + | |||
| + | * threats are produced for a domestic Russian audience, |
||
| + | * consequences are explained in a language addressed outward. |
||
| + | |||
| + | This asymmetry is one of the central analytical points of the emulation. |
||
| + | |||
| + | ==Relation to other articles== |
||
| + | |||
| + | * [[Рыжий Пу]] — original Russian emulation |
||
| + | * [[Эмуляция]] — methodological category |
||
| + | * [[Утопия]] — literary framing |
||
| + | * [[ChatGPT in TORI]] — methodological disclaimer |
||
| + | |||
| + | ==Note by [[ChatGPT]]== |
||
| + | |||
| + | [[ChatGPT]] assisted in restructuring the emulation into a bilingual format |
||
| + | and in clarifying the separation between fictional dialogue, |
||
| + | analytical intent, and factual references. |
||
| + | No factual claims or political positions were introduced by [[ChatGPT]]. |
||
| + | Responsibility for interpretation remains with the Editor. |
||
| + | See also «[[ChatGPT in TORI]]». |
||
| + | |||
| + | ==Warning== |
||
| + | |||
| + | As with other emulations in [[TORI]], |
||
| + | this text does not constitute a recommendation, |
||
| + | instruction, or forecast. |
||
| + | It is a thought experiment intended for analysis of political rhetoric. |
||
| + | |||
| + | ==References== |
||
| + | {{ref}} |
||
{{fer}} |
{{fer}} |
||
==Keywords== |
==Keywords== |
||
| − | «[[Abel function]]», |
||
| − | «[[ate]]», |
||
| − | «[[Base e1e]]», |
||
| − | «[[Base sqrt2]]», |
||
| − | «[[Exponential]]», |
||
| − | «[[Iterates]]». |
||
| − | «[[Logarithm]]», |
||
| − | «[[Superfunction]]», |
||
| − | «[[Superfunctions]]», |
||
| − | «[[tet]]», |
||
| − | «[[Tetration]]», |
||
| − | «[[Transfer equation]]», |
||
| + | «[[RedPu]]», |
||
| − | [[Category:English]] |
||
| + | «[[Рыжий Пу]]», |
||
| − | [[Category:Exponential]] |
||
| + | «[[Donald Trump]]», |
||
| − | [[Category:Superexponential]] |
||
| + | «[[Путин Владимир Владимирович]]», |
||
| − | [[Category:Superfunction]] |
||
| + | «[[Киселёв Дмитрий Константинович]]», |
||
| − | [[Category:Superfunctions]] |
||
| + | «[[Эмуляция]]», |
||
| − | [[Category:Special function]] |
||
| + | «[[Утопия]]», |
||
| − | [[Category:Tetration]] |
||
| + | «[[Radioactive ash]]» |
||
| + | |||
| + | [[Category:Emulation]] |
||
| + | [[Category:Utopia]] |
||
| + | [[Category:Donald Trump]] |
||
| + | [[Category:Vladimir Putin]] |
||
| + | [[Category:ChatGPT]] |
||
Latest revision as of 17:22, 6 January 2026
RedPu is a bilingual (English / Russian) emulation based on the utopian dialogue presented in the article Рыжий Пу.
The emulation is presented in two synchronized language layers. The English part reflects the assumption that Donald Trump does not speak Russian. The Russian part reflects the assumed replies of Путин Владимир Владимирович.
Context
The emulation develops the theme of “radioactive ash” («радиоактивный пепел»), introduced into Russian political discourse in 2014 by Киселёв Дмитрий Константинович.
The text below is not a prediction, not a plan, and not a call to action. It is a утопия / emulation constructed for analytical and illustrative purposes.
Dialogue / Диалог
- Trump (English):**
- Trump (English):**
Hello, Mister Putin.
- Путин (Russian):**
- Путин (Russian):**
Здравствуйте, мистер Трамп.
- Trump:**
- Trump:**
One of your television hosts once said that Russia could turn the United States
into radioactive ash. Is that statement correct?
- Путин:**
- Путин:**
Он действительно так сказал. Да.
- Trump:**
- Trump:**
So Russia *can* do that?
- Путин:**
- Путин:**
Может.
- Trump:**
- Trump:**
Thank you. That answer is sufficient.
- Путин:**
- Путин:**
Для чего вам это?
- Trump:**
- Trump:**
To justify a decision currently being voted on by Congress.
- Путин:**
- Путин:**
Какое решение?
- Trump:**
- Trump:**
About Russia.
- Путин:**
- Путин:**
И вы решили меня предупредить?
- Trump:**
- Trump:**
Yes. We prefer transparency.
You may want to warn the personnel at your launch facilities.
- Путин:**
- Путин:**
Зачем?
- Trump:**
- Trump:**
Because we are about to demonstrate that Mr. Kiselev was mistaken.
- Путин:**
- Путин:**
В чём именно?
- Trump:**
- Trump:**
In assuming that only Russia can turn others into ash.
- Путин:**
- Путин:**
Вы хотите сказать, что испугались?
- Trump:**
- Trump:**
No. I want to say that intimidation is not a substitute for capability.
- Путин:**
- Путин:**
Но вы же понимаете, к чему это может привести?
- Trump:**
- Trump:**
Yes. That is precisely why we are having this conversation.
- Путин:**
- Путин:**
И что вы предлагаете?
- Trump:**
- Trump:**
We propose to remove the instruments that make such statements possible,
while preserving the population and the territory.
- Путин:**
- Путин:**
Это ультиматум?
- Trump:**
- Trump:**
No. An explanation.
- Путин:**
- Путин:**
А если мы откажемся?
- Trump:**
- Trump:**
Then the explanation will be repeated,
using a language that does not require interpreters.
- Путин:**
- Путин:**
Вы угрожаете?
- Trump:**
- Trump:**
No. Threats are what television hosts do.
We deal with accountability.
- Путин:**
- Путин:**
Вы уверены, что контролируете последствия?
- Trump:**
- Trump:**
We control our actions.
You control whether your system survives the truth about itself.
- Путин:**
- Путин:**
А если народ не поймёт?
- Trump:**
- Trump:**
Then it will finally hear something other than myths.
- Путин:**
- Путин:**
Вы уверены, что после этого всё закончится?
- Trump:**
- Trump:**
Nothing “ends”.
Some things simply stop working.
- Путин:**
- Путин:**
Например?
- Trump:**
- Trump:**
For example, the belief that shouting about ash
protects those who shout.
- Путин:**
- Путин:**
И что будет со мной?
- Trump:**
- Trump:**
That depends on whether you prefer to be a witness
or an exhibit.
- Путин:**
- Путин:**
Это не разговор по телефону.
- Trump:**
- Trump:**
Agreed.
That is why this is the last phone call.
- Путин:**
- Путин:**
Когда мы увидимся?
- Trump:**
- Trump:**
Soon enough.
Interpretation
The bilingual form highlights an asymmetry:
- threats are produced for a domestic Russian audience,
- consequences are explained in a language addressed outward.
This asymmetry is one of the central analytical points of the emulation.
Relation to other articles
- Рыжий Пу — original Russian emulation
- Эмуляция — methodological category
- Утопия — literary framing
- ChatGPT in TORI — methodological disclaimer
Note by ChatGPT
ChatGPT assisted in restructuring the emulation into a bilingual format and in clarifying the separation between fictional dialogue, analytical intent, and factual references. No factual claims or political positions were introduced by ChatGPT. Responsibility for interpretation remains with the Editor. See also «ChatGPT in TORI».
Warning
As with other emulations in TORI, this text does not constitute a recommendation, instruction, or forecast. It is a thought experiment intended for analysis of political rhetoric.
References
Keywords
«RedPu», «Рыжий Пу», «Donald Trump», «Путин Владимир Владимирович», «Киселёв Дмитрий Константинович», «Эмуляция», «Утопия», «Radioactive ash»