Difference between revisions of "File:Logi1a345T300.png"
(Importing image file) |
|||
| (5 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|File:Logi1a345T300.png|Original file (1,636 × 565 pixels, file size: 184 KB, MIME type: image/png) }} |
||
| − | Importing image file |
||
| + | |||
| + | [[Explicit plot]]s of various iterates of the [[Logistic operator]] with various values of parameter \(s\). |
||
| + | |||
| + | \(y=\mathrm{LogisticOperator}_s^{\,c}(x)\) for |
||
| + | \(s\!=\!3\) (left), |
||
| + | \(s\!=\!4\) (center), |
||
| + | \(s\!=\!5\) (right) |
||
| + | at |
||
| + | \(c=1\) (black), |
||
| + | \(c=0.8\) (blue), |
||
| + | \(c=0.5\) (green), |
||
| + | \(c=0.2\) (red). |
||
| + | |||
| + | The non-integer iterates of the [[logisticOperator]] are calculated through the functions [[LogisticSequence]] and [[ArcLogisticSequence]] with |
||
| + | |||
| + | \[ \mathrm{LogisticOperator}_s^{\,c}(z)= |
||
| + | \mathrm{LogisticSequence}_s\Big( c + \mathrm{ArcLogisticSequence}(z) \big) |
||
| + | \] |
||
| + | |||
| + | where [[logisticOperator]] is quadratic function of special kind: |
||
| + | |||
| + | \(\mathrm{LogisticOperator}_s(z)=sz(1\!-\!z)\) |
||
| + | |||
| + | The picture is used as Figure 7.2 at page 72 of book «[[Superfunctions]]»<ref> |
||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28 |
||
| + | </ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | </ref> |
||
| + | <br> |
||
| + | in order to show that for some values of the argument, the non-integer iterate is not real. |
||
| + | The cut line appears in the complex map due to the cut of the [[Abelfunction]], |
||
| + | this cut line is marked at many ficures of Chapter 7 of that book. |
||
| + | |||
| + | ==C++ generator of curves for \(s=3\) == |
||
| + | // Files [[efjh.cin]] and [[ado.cin]] should be loaded in order to compile the [[C++]] code below. |
||
| + | <pre> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | using namespace std; |
||
| + | #include <complex> |
||
| + | typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "ado.cin" |
||
| + | #include "efjh.cin" |
||
| + | |||
| + | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| + | FILE *o;o=fopen("logi1a3.eps","w");ado(o,104,104); |
||
| + | fprintf(o,"2 2 translate\n 100 100 scale\n"); |
||
| + | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
| + | M(0,0)L(1,0)L(1,1)L(0,1) |
||
| + | fprintf(o,"C .003 W 0 0 0 RGB S\n"); |
||
| + | M(0,.25)L(1,.25) M(.25,0)L(.25,1) |
||
| + | M(0,.50)L(1,.50) M(.50,0)L(.50,1) |
||
| + | M(0,.75)L(1,.75) M(.75,0)L(.75,1) |
||
| + | fprintf(o,".003 W 0 0 0 RGB S\n"); |
||
| + | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
| + | maq(3.); |
||
| + | DO(m,101){x=1.-.0000999*m*m;y=Re(F(1.+E(x)));if(m==0)M(x,y)else L(x,y);}fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
| + | M(.75,9./16.) DO(m,101){x=.75-.0000749*m*m;y=Re(F(.8+E(x))); L(x,y);}fprintf(o,".006 W 0 0 .8 RGB S\n"); |
||
| + | M(.75,9./16.) DO(m,101){x=.75-.0000749*m*m;y=Re(F(.5+E(x))); L(x,y);}fprintf(o,".01 W 0 .8 0 RGB S\n"); |
||
| + | M(.75,9./16.) DO(m,101){x=.75-.0000749*m*m;y=Re(F(.2+E(x))); L(x,y);}fprintf(o,".006 W .8 0 0 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf logi1a3.eps"); |
||
| + | system( "open logi1a3.eps"); |
||
| + | getchar(); system("killall Preview"); |
||
| + | } |
||
| + | </pre> |
||
| + | ==C++ generator of curves for \(s=4\) == |
||
| + | // Files [[efjh.cin]] and [[ado.cin]] should be loaded in order to compile the [[C++]] code below. |
||
| + | <pre> |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | using namespace std; |
||
| + | #include <complex> |
||
| + | typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "ado.cin" |
||
| + | #include "efjh.cin" |
||
| + | |||
| + | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| + | FILE *o;o=fopen("logi1a4.eps","w");ado(o,104,104); |
||
| + | fprintf(o,"2 2 translate\n 100 100 scale\n"); |
||
| + | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
| + | M(0,0)L(1,0)L(1,1)L(0,1) |
||
| + | fprintf(o,"C .003 W 0 0 0 RGB S\n"); |
||
| + | M(0,.25)L(1,.25) M(.25,0)L(.25,1) |
||
| + | M(0,.50)L(1,.50) M(.50,0)L(.50,1) |
||
| + | M(0,.75)L(1,.75) M(.75,0)L(.75,1) |
||
| + | fprintf(o,".003 W 0 0 0 RGB S\n"); |
||
| + | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
| + | maq(4.); |
||
| + | DO(m,101){x=1.-.0000999*m*m;y=Re(F(1.+E(x)));if(m==0)M(x,y)else L(x,y);}fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
| + | M(1,0) DO(m,101){x=1.-.0000999*m*m;y=Re(F(.8+E(x))); L(x,y);}fprintf(o,".006 W 0 0 .8 RGB S\n"); |
||
| + | M(1,0) DO(m,101){x=1.-.0000999*m*m;y=Re(F(.5+E(x))); L(x,y);}fprintf(o,".01 W 0 .8 0 RGB S\n"); |
||
| + | M(1,0) DO(m,101){x=1.-.0000999*m*m;y=Re(F(.2+E(x))); L(x,y);}fprintf(o,".006 W .8 0 0 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf logi1a4.eps"); |
||
| + | system( "open logi1a4.pdf"); |
||
| + | getchar(); system("killall Preview"); |
||
| + | } |
||
| + | </pre> |
||
| + | ==C++ generator of curves for \(s=5\) == |
||
| + | // FIels [[efjh.cin]] and [[ado.cin]] should be loaded to the working directory in order to compile the [[C++]] code below. |
||
| + | //<pre> |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | using namespace std; |
||
| + | #include <complex> |
||
| + | typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "ado.cin" |
||
| + | #include "efjh.cin" |
||
| + | |||
| + | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| + | FILE *o;o=fopen("logi1a5.eps","w");ado(o,140,140); |
||
| + | fprintf(o,"2 2 translate\n 100 100 scale\n"); |
||
| + | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
| + | M(0,0)L(1.25,0)L(1.25,1.25)L(0,1.25) |
||
| + | fprintf(o,"C .003 W 0 0 0 RGB S\n"); |
||
| + | M(0,.25)L(1.25,.25) M(.25,0)L(.25,1.25) |
||
| + | M(0,.50)L(1.25,.50) M(.50,0)L(.50,1.25) |
||
| + | M(0,.75)L(1.25,.75) M(.75,0)L(.75,1.25) |
||
| + | M(0,1.0)L(1.25,1.0) M(1.0,0)L(1.0,1.25) |
||
| + | fprintf(o,".003 W 0 0 0 RGB S\n"); |
||
| + | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
| + | maq(5); |
||
| + | DB x0=1.25; |
||
| + | DO(m,101){x=1.001-.00010001*m*m;y=Re(F(1.+E(x)));if(m==0)M(x,y)else L(x,y);}fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
| + | DO(m,101){x=1.17-.000116*m*m;y=Re(F(.8+E(x)));if(m==0)M(x,y)else L(x,y);}fprintf(o,".006 W 0 0 .8 RGB S\n"); |
||
| + | M(1.25,-.02) |
||
| + | DO(m,101){x=x0-.0001249*m*m;y=Re(F(.5+E(x))); L(x,y);}fprintf(o,".01 W 0 .8 0 RGB S\n"); |
||
| + | M(1.25,-.01) |
||
| + | DO(m,101){x=x0-.0001249*m*m;y=Re(F(.2+E(x))); L(x,y);}fprintf(o,".006 W .8 0 0 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf logi1a5.eps"); |
||
| + | system( "open logi1a5.pdf"); |
||
| + | getchar(); system("killall Preview"); |
||
| + | } |
||
| + | </pre> |
||
| + | |||
| + | ==Latex generator of labels== |
||
| + | |||
| + | % Files logi1a3.pdf, logi1a4.pdf, logi1a5.pdf should be generated with the codes above in order to compile the [[Latex]] document below. |
||
| + | %<pre> |
||
| + | \documentclass[12pt]{article} %<br> |
||
| + | \usepackage{geometry} %<br> |
||
| + | \usepackage{graphics} %<br> |
||
| + | \usepackage{rotating} %<br> |
||
| + | \paperwidth 394pt %<br> |
||
| + | \paperheight 136pt %<br> |
||
| + | \topmargin -100pt %<br> |
||
| + | \oddsidemargin -75pt %<br> |
||
| + | \newcommand \sx {\scalebox} %<br> |
||
| + | \newcommand \ing \includegraphics %<br> |
||
| + | \newcommand \rot {\begin{rotate}} %<br> |
||
| + | \newcommand \ero {\end{rotate}} %<br> |
||
| + | \parindent 0pt %<br> |
||
| + | \pagestyle{empty} %<br> |
||
| + | \begin{document} %<br> |
||
| + | \newcommand \fiax { %<br> |
||
| + | \put(3,108){\sx{.9}{1}} %<br> |
||
| + | %\put(-9, 84){\sx{.9}{0.25}} %<br> |
||
| + | \put(3, 58){\sx{.9}{$\frac{1}{2}$}} %<br> |
||
| + | %\put(-9, 34){\sx{.9}{0.25}} %<br> |
||
| + | \put(3, 8){\sx{.9}{0}} %<br> |
||
| + | \put( 8, 1){\sx{.9}{0}} %<br> |
||
| + | \put( 55, 1){\sx{.9}{0.5}} %<br> |
||
| + | \put(108, 1){\sx{.9}{1}} %<br> |
||
| + | } %<br> |
||
| + | \begin{picture}(126,124) %<br> |
||
| + | \put(8,8){\ing{logi1a3}} \fiax \put(2,124){\sx{1}{$y\!=\!T^{c}(x)$}} %<br> |
||
| + | \put(31,63){\rot{51}\sx{.85}{$c\!=1$}\ero} %<br> |
||
| + | \put(33,53){\rot{49}\sx{.85}{$c\!=0.8$}\ero} %<br> |
||
| + | \put(39,48){\rot{48}\sx{.85}{$c\!=0.5$}\ero} %<br> |
||
| + | \put(44,40){\rot{46}\sx{.85}{$c\!=0.2$}\ero} %<br> |
||
| + | \put(118, 1){\sx{.9}{$x$}} %<br> |
||
| + | \put(44,20){\sx{1.6}{$s\!=\!3$}} %<br> |
||
| + | \end{picture} %<br> |
||
| + | \begin{picture}(126,124) \put(8,8){\ing{logi1a4}} \fiax \put(2,124){\sx{1}{$y\!=\!T^{c}(x)$}} %<br> |
||
| + | \put(32,84){\rot{57}\sx{.9}{$c\!=1$}\ero} %<br> |
||
| + | \put(39,70){\rot{54}\sx{.88}{$c\!=0.8$}\ero} %<br> |
||
| + | \put(46,65){\rot{51}\sx{.88}{$c\!=0.5$}\ero} %<br> |
||
| + | \put(54,54){\rot{49}\sx{.9}{$c\!=0.2$}\ero} %<br> |
||
| + | \put(118, 1){\sx{.9}{$x$}} %<br> |
||
| + | \put(44,20){\sx{1.6}{$s\!=\!4$}} %<br> |
||
| + | \end{picture} %<br> |
||
| + | \begin{picture}(140,127) \put(8,8){\ing{logi1a5}} \fiax %\put(0,124){\sx{1}{$y$}} %<br> |
||
| + | \put(34,107){\rot{61}\sx{.93}{$c\!=1$}\ero} %<br> |
||
| + | \put(45, 90){\rot{59}\sx{.92}{$c\!=0.8$}\ero} %<br> |
||
| + | \put(53, 77){\rot{55}\sx{.92}{$c\!=0.5$}\ero} %<br> |
||
| + | \put(58, 60){\rot{50}\sx{.92}{$c\!=0.2$}\ero} %<br> |
||
| + | \put(128, 1){\sx{.9}{$x$}} %<br> |
||
| + | \put(44,20){\sx{1.6}{$s\!=\!5$}} %<br> |
||
| + | \end{picture} %<br> |
||
| + | \end{document} %<br> |
||
| + | %</pre> |
||
| + | |||
| + | ==References== |
||
| + | {{ref}} |
||
| + | |||
| + | {{fer}} |
||
| + | |||
| + | ==Keywords== |
||
| + | «[[Holomorphic extension of the Collatz subsequence]]», |
||
| + | «[[LogisitcOperator]]», |
||
| + | «[[Table of superfunctions]]», |
||
| + | «[[Transfer equation]]», |
||
| + | «[[Superfunctions]]», |
||
| + | |||
| + | [[Category:Abel function]] |
||
| + | [[Category:Abelfunction]] |
||
| + | [[Category:ArcLogisticSequence]] |
||
| + | [[Category:Book]] |
||
| + | [[Category:BookPlot]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Elutin Pavel Vyacheslavocish]] |
||
| + | [[Category:Explicit plot]] |
||
| + | [[Category:Latex]] |
||
| + | [[Category:LogisitcOperator]] |
||
| + | [[Category:Iteration]] |
||
| + | [[Category:LogisticSequence]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Transfer function]] |
||
Latest revision as of 11:44, 21 August 2025
Explicit plots of various iterates of the Logistic operator with various values of parameter \(s\).
\(y=\mathrm{LogisticOperator}_s^{\,c}(x)\) for \(s\!=\!3\) (left), \(s\!=\!4\) (center), \(s\!=\!5\) (right) at \(c=1\) (black), \(c=0.8\) (blue), \(c=0.5\) (green), \(c=0.2\) (red).
The non-integer iterates of the logisticOperator are calculated through the functions LogisticSequence and ArcLogisticSequence with
\[ \mathrm{LogisticOperator}_s^{\,c}(z)= \mathrm{LogisticSequence}_s\Big( c + \mathrm{ArcLogisticSequence}(z) \big) \]
where logisticOperator is quadratic function of special kind:
\(\mathrm{LogisticOperator}_s(z)=sz(1\!-\!z)\)
The picture is used as Figure 7.2 at page 72 of book «Superfunctions»[1][2]
in order to show that for some values of the argument, the non-integer iterate is not real.
The cut line appears in the complex map due to the cut of the Abelfunction,
this cut line is marked at many ficures of Chapter 7 of that book.
C++ generator of curves for \(s=3\)
// Files efjh.cin and ado.cin should be loaded in order to compile the C++ code below.
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
#include "efjh.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi1a3.eps","w");ado(o,104,104);
fprintf(o,"2 2 translate\n 100 100 scale\n");
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
M(0,0)L(1,0)L(1,1)L(0,1)
fprintf(o,"C .003 W 0 0 0 RGB S\n");
M(0,.25)L(1,.25) M(.25,0)L(.25,1)
M(0,.50)L(1,.50) M(.50,0)L(.50,1)
M(0,.75)L(1,.75) M(.75,0)L(.75,1)
fprintf(o,".003 W 0 0 0 RGB S\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
maq(3.);
DO(m,101){x=1.-.0000999*m*m;y=Re(F(1.+E(x)));if(m==0)M(x,y)else L(x,y);}fprintf(o,".006 W 0 0 0 RGB S\n");
M(.75,9./16.) DO(m,101){x=.75-.0000749*m*m;y=Re(F(.8+E(x))); L(x,y);}fprintf(o,".006 W 0 0 .8 RGB S\n");
M(.75,9./16.) DO(m,101){x=.75-.0000749*m*m;y=Re(F(.5+E(x))); L(x,y);}fprintf(o,".01 W 0 .8 0 RGB S\n");
M(.75,9./16.) DO(m,101){x=.75-.0000749*m*m;y=Re(F(.2+E(x))); L(x,y);}fprintf(o,".006 W .8 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi1a3.eps");
system( "open logi1a3.eps");
getchar(); system("killall Preview");
}
C++ generator of curves for \(s=4\)
// Files efjh.cin and ado.cin should be loaded in order to compile the C++ code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
#include "efjh.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi1a4.eps","w");ado(o,104,104);
fprintf(o,"2 2 translate\n 100 100 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
M(0,0)L(1,0)L(1,1)L(0,1)
fprintf(o,"C .003 W 0 0 0 RGB S\n");
M(0,.25)L(1,.25) M(.25,0)L(.25,1)
M(0,.50)L(1,.50) M(.50,0)L(.50,1)
M(0,.75)L(1,.75) M(.75,0)L(.75,1)
fprintf(o,".003 W 0 0 0 RGB S\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
maq(4.);
DO(m,101){x=1.-.0000999*m*m;y=Re(F(1.+E(x)));if(m==0)M(x,y)else L(x,y);}fprintf(o,".006 W 0 0 0 RGB S\n");
M(1,0) DO(m,101){x=1.-.0000999*m*m;y=Re(F(.8+E(x))); L(x,y);}fprintf(o,".006 W 0 0 .8 RGB S\n");
M(1,0) DO(m,101){x=1.-.0000999*m*m;y=Re(F(.5+E(x))); L(x,y);}fprintf(o,".01 W 0 .8 0 RGB S\n");
M(1,0) DO(m,101){x=1.-.0000999*m*m;y=Re(F(.2+E(x))); L(x,y);}fprintf(o,".006 W .8 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi1a4.eps");
system( "open logi1a4.pdf");
getchar(); system("killall Preview");
}
C++ generator of curves for \(s=5\)
// FIels efjh.cin and ado.cin should be loaded to the working directory in order to compile the C++ code below.
// #include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
#include "efjh.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi1a5.eps","w");ado(o,140,140);
fprintf(o,"2 2 translate\n 100 100 scale\n");
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
M(0,0)L(1.25,0)L(1.25,1.25)L(0,1.25)
fprintf(o,"C .003 W 0 0 0 RGB S\n");
M(0,.25)L(1.25,.25) M(.25,0)L(.25,1.25)
M(0,.50)L(1.25,.50) M(.50,0)L(.50,1.25)
M(0,.75)L(1.25,.75) M(.75,0)L(.75,1.25)
M(0,1.0)L(1.25,1.0) M(1.0,0)L(1.0,1.25)
fprintf(o,".003 W 0 0 0 RGB S\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
maq(5);
DB x0=1.25;
DO(m,101){x=1.001-.00010001*m*m;y=Re(F(1.+E(x)));if(m==0)M(x,y)else L(x,y);}fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,101){x=1.17-.000116*m*m;y=Re(F(.8+E(x)));if(m==0)M(x,y)else L(x,y);}fprintf(o,".006 W 0 0 .8 RGB S\n");
M(1.25,-.02)
DO(m,101){x=x0-.0001249*m*m;y=Re(F(.5+E(x))); L(x,y);}fprintf(o,".01 W 0 .8 0 RGB S\n");
M(1.25,-.01)
DO(m,101){x=x0-.0001249*m*m;y=Re(F(.2+E(x))); L(x,y);}fprintf(o,".006 W .8 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi1a5.eps");
system( "open logi1a5.pdf");
getchar(); system("killall Preview");
}
Latex generator of labels
% Files logi1a3.pdf, logi1a4.pdf, logi1a5.pdf should be generated with the codes above in order to compile the Latex document below.
%\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\usepackage{graphics} %<br>
\usepackage{rotating} %<br>
\paperwidth 394pt %<br>
\paperheight 136pt %<br>
\topmargin -100pt %<br>
\oddsidemargin -75pt %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \ing \includegraphics %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\parindent 0pt %<br>
\pagestyle{empty} %<br>
\begin{document} %<br>
\newcommand \fiax { %<br>
\put(3,108){\sx{.9}{1}} %<br>
%\put(-9, 84){\sx{.9}{0.25}} %<br>
\put(3, 58){\sx{.9}{$\frac{1}{2}$}} %<br>
%\put(-9, 34){\sx{.9}{0.25}} %<br>
\put(3, 8){\sx{.9}{0}} %<br>
\put( 8, 1){\sx{.9}{0}} %<br>
\put( 55, 1){\sx{.9}{0.5}} %<br>
\put(108, 1){\sx{.9}{1}} %<br>
} %<br>
\begin{picture}(126,124) %<br>
\put(8,8){\ing{logi1a3}} \fiax \put(2,124){\sx{1}{$y\!=\!T^{c}(x)$}} %<br>
\put(31,63){\rot{51}\sx{.85}{$c\!=1$}\ero} %<br>
\put(33,53){\rot{49}\sx{.85}{$c\!=0.8$}\ero} %<br>
\put(39,48){\rot{48}\sx{.85}{$c\!=0.5$}\ero} %<br>
\put(44,40){\rot{46}\sx{.85}{$c\!=0.2$}\ero} %<br>
\put(118, 1){\sx{.9}{$x$}} %<br>
\put(44,20){\sx{1.6}{$s\!=\!3$}} %<br>
\end{picture} %<br>
\begin{picture}(126,124) \put(8,8){\ing{logi1a4}} \fiax \put(2,124){\sx{1}{$y\!=\!T^{c}(x)$}} %<br>
\put(32,84){\rot{57}\sx{.9}{$c\!=1$}\ero} %<br>
\put(39,70){\rot{54}\sx{.88}{$c\!=0.8$}\ero} %<br>
\put(46,65){\rot{51}\sx{.88}{$c\!=0.5$}\ero} %<br>
\put(54,54){\rot{49}\sx{.9}{$c\!=0.2$}\ero} %<br>
\put(118, 1){\sx{.9}{$x$}} %<br>
\put(44,20){\sx{1.6}{$s\!=\!4$}} %<br>
\end{picture} %<br>
\begin{picture}(140,127) \put(8,8){\ing{logi1a5}} \fiax %\put(0,124){\sx{1}{$y$}} %<br>
\put(34,107){\rot{61}\sx{.93}{$c\!=1$}\ero} %<br>
\put(45, 90){\rot{59}\sx{.92}{$c\!=0.8$}\ero} %<br>
\put(53, 77){\rot{55}\sx{.92}{$c\!=0.5$}\ero} %<br>
\put(58, 60){\rot{50}\sx{.92}{$c\!=0.2$}\ero} %<br>
\put(128, 1){\sx{.9}{$x$}} %<br>
\put(44,20){\sx{1.6}{$s\!=\!5$}} %<br>
\end{picture} %<br>
\end{document} %<br>
%
References
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 1,636 × 565 (184 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: