File:ZexPlot.png

From TORI
Jump to navigation Jump to search

ZexPlot.png(408 × 402 pixels, file size: 10 KB, MIME type: image/png)


Explicit plot of the ArcLambertW function, \[ y=\mathrm{ArcLambertW}(x)=x\cdot \exp(x) \]

This plot is used as Fig.11.1 at page 135 of book «Superfunctions», 2020 [1][2]
in order to show the Transfer function considered in Chapter 11 as an example for the exotic iteration.

Generators

C++ generator of the curve

//File ado.cin

void ado(FILE *O, int X, int Y)
{       fprintf(O,"%c!PS-Adobe-2.0 EPSF-2.0\n",'%');
       fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y);
       fprintf(O,"/M {moveto} bind def\n");
       fprintf(O,"/L {lineto} bind def\n");
       fprintf(O,"/S {stroke} bind def\n");
       fprintf(O,"/s {show newpath} bind def\n");
       fprintf(O,"/C {closepath} bind def\n");
       fprintf(O,"/F {fill} bind def\n");
       fprintf(O,"/o {.1 0 360 arc C S} bind def\n");
       fprintf(O,"/times-Roman findfont 20 scalefont setfont\n");
       fprintf(O,"/W {setlinewidth} bind def\n");
       fprintf(O,"/RGB {setrgbcolor} bind def\n");}

should be loaded (if not yet loaded) to the current directory in order to compile the code below:

 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #define DB double
 #define DO(x,y) for(x=0;x<y;x++)
 using namespace std;
 #include"ado.cin"
 #define M(x,y) fprintf(o,"%5.3f %5.3f M\n",0.+x,0.+y);
 #define L(x,y) fprintf(o,"%5.3f %5.3f L\n",0.+x,0.+y);
 
 main(){ int j,k,m,n; DB x,y, a;
 FILE *o;o=fopen("arclambertw.eps","w");ado(o,410,408);
 fprintf(o,"304 104 translate\n 100 100 scale\n");
 for(m=-3;m<2;m++){ M(m,-1)L(m,3)}
 for(n=-1;n<4;n++){ M(-3,n)L(1,n)}
 fprintf(o,".01 W 0 0 0 RGB S\n");
 for(n=0;n<410;n+=2){x=-3.02+.01*n; y=x*exp(x); if(n==0)M(x,y) else L(x,y) }
 fprintf(o,".03 W 0 .8 0 RGB S\n");
 M( 1,    M_E) L(0,    M_E)
 M(-1,-1./M_E) L(0,-1./M_E)
 fprintf(o,".005 W 0 0 0 RGB S\n");
 fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
 system("epstopdf arclambertw.eps");
 system(    "open arclambertw.pdf"); //these 2 commands may be specific for macintosh
 getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify
 }

Latex generator of the lables

% Copyleft 2011 by Dmitrii Kouznetsov%<br>
 \documentclass[12pt]{article} %<br>
 \usepackage{geometry} %<br>
 \usepackage{graphicx} %<br>
 \usepackage{rotating} %<br>
 \paperwidth 410pt %<br>
 \paperheight 404pt %<br>
 \topmargin -103pt %<br>
 \oddsidemargin -94pt %<br>
 \textwidth 1200pt %<br>
 \textheight 600pt %<br>
 \pagestyle {empty} %<br>
 \newcommand \sx {\scalebox} %<br>
 \newcommand \rot {\begin{rotate}} %<br>
 \newcommand \ero {\end{rotate}} %<br>
 \newcommand \ing {\includegraphics} %<br>
 \begin{document} %<br>
 { \begin{picture}(408,410) %<br>
 \put(1,9){\ing{arclambertw}} %<br>
 \put(288,398){\sx{2.9}{$y$}} %<br>
 \put(309,378){\sx{3.1}{$\mathrm e$}} %<br>
 \put(288,303){\sx{2.8}{$2$}} %<br>
 \put(288,203){\sx{2.8}{$1$}} %<br>
 \put(288,103){\sx{2.8}{$0$}} %<br>
 \put(309,70){\sx{2.6}{$-\!1/\mathrm e$}} %<br>
 \put( 86, 90){\sx{2.5}{$-\!2$}} %<br>
 \put(186,90){\sx{2.5}{$-\!1$}}  %<br>
 % \put(300,-9){\sx{2.5}{$0$}} %<br>
 \put(398,90){\sx{2.6}{$x$}} %<br>
 \end{picture} %<br>
 } %<br>
 \end{document} 

References

  1. https://www.amazon.com/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020. Tools for evaluation of superfunctions, abelfunctions and non-integer iterates of holomorphic functions are collected. For a given transferfunction T, the superfunction is solution F of the transfer equation F(z+1)=T(F(z)) . The abelfunction is inverse of F. In particular, superfunctions of factorial, exp, sin are suggested. The Holomorphic extensions of the logistic sequence and those of the Ackermann functions are considered. Among ackermanns, the tetration (mainly to the base b>1) and natural pentation (to base b=e) are presented. The efficient algorithm for the evaluation of superfunctions and abelfunctions are described. The graphics and complex maps are plotted. The possible applications are discussed. Superfunctions significantly extend the set of functions, that can be used in scientific research and technical design.
  2. https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:14, 1 December 2018Thumbnail for version as of 06:14, 1 December 2018408 × 402 (10 KB)Maintenance script (talk | contribs)Importing image file

The following file is a duplicate of this file (more details):

There are no pages that use this file.