File:SuTraAsy2plotT.png
Original file (819 × 708 pixels, file size: 75 KB, MIME type: image/png)
Summary
Function SuTra of real argument and its asympototics.
at large negative values of the input, \[ \mathrm{SuTra}(x) \sim -\ln(-x) \]
At large positieve values of the input, \[ \mathrm{SuTra}(x) \underset{\mathrm{ate},\ x\to +\infty}{\sim} \mathrm{tet}(x\!-\!x_{\mathrm {st}} ) \] The finger estimate suggests that \(\ x_{\mathrm {st}} \approx 0.7 \)
Function SuTra is specified as «Entire Function with Logarithmic Asymptotic».
It is described in book «Superfunctions»[1], 2020 and also in Applied Mathematical Sciences
[2], 2013.
The generator below is copilefld. Please attribute the source at the reuse. The attribution helps to trace (and to correct) mistakes if any.
C++
/* subroutines ado.cin, Tania.cin, LambertW.cin, SuZex.cin, fslog.cin should be loaded in order to compile the source below.
// #include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "Tania.cin" // need for LambertW
#include "LambertW.cin" // need for AuZex
#include "SuZex.cin"
#include "fslog.cin"
//#include "AuZex.cin"
z_type tra(z_type z){ return exp(z)+z;}
//z_type F(z_type z){ return log(suzex(z));}
//z_type G(z_type z){ return auzex(exp(z));}
z_type sutra(z_type z){ if( Re(z)<2. || fabs(Im(z))>2. ) return log(suzex(z));
return tra(sutra(z-1.));}
#include "ado.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
//FILE *o;o=fopen("SuTraPlo3.eps","w"); ado(o,812,812);
//FILE *o;o=fopen("19.eps","w"); ado(o,712,612);
FILE *o;o=fopen("SuTraAsy2plot.eps","w"); ado(o,712,612);
fprintf(o,"202 202 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
DO(m,240){x=-2.02+.02*m; y=Re(sutra(x)); if(m==0) M(x,y) else L(x,y) if(x>5.03||y>4) break;} fprintf(o,".03 W 0 0 1 RGB S\n");
DO(m,98){x=-2.02+.02*m; y=-log(-x); if(m==0) M(x,y) else L(x,y) if(x>5.03||y>4) break;} fprintf(o,".01 W 0 0 0 RGB S\n");
// DO(m,74){x=-2.02+.1*m; y=Re(FSLOG(x)); if(m==0) M(x,y) else L(x,y) if(x>5.03||y>4) break;} fprintf(o,".02 W 1 0 0 RGB S\n");
DO(m,65){x=-2.05+.1*m; y=Re(FSLOG(sutra(x))); if(m==0) M(x,y) else L(x,y) if(x>5.03||y>4) break;} fprintf(o,".05 W 0 1 0 RGB S\n");
M(-2,-2-.7)L(5,5-.7) fprintf(o,".006 W 0 0 0 RGB S\n");
M(-1,-1-1.1)L(5,5-1.1) fprintf(o,".006 W 0 0 0 RGB S\n");
for(n=-2;n<5;n++) {M(-2,n)L(5,n)}
for(m=-2;m<6;m++) {M(m,-2)L(m,4)}
// M(M_E,0)L(M_E,1) M(0,M_E)L(1,M_E)
M(0,1.+M_E) L(2,1.+M_E)
fprintf(o,".004 W S\n");
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf SuTraAsy2plot.eps");
system( "open SuTraAsy2plot.pdf"); //for macintosh
// getchar(); system("killall Preview"); // For macintosh
return 0;
}
//
Latex
\documentclass[12pr]{article}
\paperwidth 740pt
\paperheight 640pt
\textwidth 800pt
\textheight 700pt
\topmargin -96pt
\oddsidemargin -66pt
\usepackage{graphicx}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \ing {\includegraphics}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\parindent 0pt
\begin{document}
\begin{picture}(720,620)
\put(20,20){\ing{SuTraAsy2plot}}
\put( 4,606){\sx{3.1}{\(y\)}}
\put(224,590.4){\sx{2.9}{\(y\!=\!1\!+\!\mathrm e\)}}
\put( 6,516){\sx{2.4}{\(3\)}}
\put( 6,416){\sx{2.4}{\(2\)}}
\put( 6,316){\sx{2.4}{\(1\)}}
\put( 6,216){\sx{2.4}{\(0\)}}
\put(-6,114){\sx{2.3}{\(-\!1\)}}
\put(-6,14){\sx{2.3}{\(-\!2\)}}
\put(0,0){\sx{2.4}{\(-2\)}}
\put(102,0){\sx{2.4}{\(-1\)}}
\put(218,0){\sx{2.4}{\(0\)}}
\put(318,0){\sx{2.4}{\(1\)}}
\put(418,0){\sx{2.4}{\(2\)}}
\put(518,0){\sx{2.4}{\(3\)}}
\put(618,0){\sx{2.4}{\(4\)}}
\put(710,1){\sx{2.7}{\(x\)}}
\put(155,276){\sx{2.6}{\rot{72}\(y=-\ln(-x)\)\ero}}
\put(232,240){\sx{2.6}{\rot{48}\(y=\mathrm{SuTra}(x)\)\ero}}
\put(255,175){\sx{2.6}{\rot{44}\(y=x-0.7\)\ero}}
\put(375,255){\sx{2.6}{\rot{44}\(y=x-1.1\)\ero}}
\put(0,48){\sx{2.9}{\rot{14}\(y\!=\!\mathrm{ate}\big(\mathrm{SuTra}(x)\big)\)\ero}}
\end{picture}
\end{document}
References
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf D.Kouzntsov. Superfunctions. Lambert Academic Publishing, 2020.
- ↑ https://www.m-hikari.com/ams/ams-2013/ams-129-132-2013/kouznetsovAMS129-132-2013.pdf Applied Mathematical Sciences, Vol. 7, 2013, no. 131, 6527 - 6541 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.310573 Entire Function with Logarithmic Asymptotic Dmitrii Kouznetsov
Keywords
«ado.cin», «fslog.cin», «LambertW.cin», «Tania.cin», «SuZex.cin»,
«Arctetral asymptotic», «Arctetration», «Asymptotic», «Superfunction», «Superfunctions», «SuTra», «Trappmann function»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 23:23, 30 January 2026 | 819 × 708 (75 KB) | T (talk | contribs) | {{oq|SuTraAsy2plotT.png|Original file (819 × 708 pixels, file size: 75 KB, MIME type: image/png)|400}} Function SuTra of real argument and its asympototics. at large negative values of the input, \[ \mathrm{SuTra}(x) \sim -\ln(-x) \] At large positieve values of the input, \[ \mathrm{SuTra}(x) \underset{\mathrm{ate},\ x\to +\infty}{\sim} \mathrm{tet}(x\!-\!x_{\mathrm {st}} ) \] The finger estimate suggests that \(\ x_{\mathrm {st}} \approx 0.7 \) Function SuTra is specifie... |
You cannot overwrite this file.
File usage
There are no pages that use this file.