File:Sqrt2figL45eT.png
Original file (2,180 × 2,159 pixels, file size: 1.07 MB, MIME type: image/png)
Complex map of the Abel function \(G\!=\!\mathrm{AuExp}_{\sqrt{2},5}\) of the exponential to base \(b\!=\!\sqrt{2}\) constructed at the fixed point \(L\!=\!4\) with Regular iteration and normalization \(G(5)\!=\!0\).
In the Mathematics of computation [1], this function is denoted as \(F_{4,5}^{-1}\).
The lines drawn correspond to \(u\!+\!\mathrm i v=G(x\!+\!\mathrm i y)\)
The map is used as Fig.9.7 at page 112 of book «Superfunctions», 2020
[2][3]
in order to confirm the successful construction and implementation of the growing Abelfunction
\(\mathrm{AuExp}_{\sqrt{2},5}\)
for the transfer function
\(T\!=\!\exp_{\sqrt{2}}\)
with the Regular iteration at the fixed point \(L\!=\!4\).
C++ generator of curves
Files ado.cin and conto.cin should be loaded to the working directory in order to compile the C++ code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #include "conto.cin"
z_type f45E(z_type z){int n; z_type e,s;
DB coeu[21]={1.,
0.44858743119526122890, .19037224679780675668,
0.77829576536968278770e-1, 0.30935860305707997953e-1,
0.12022125769065893274e-1, 0.45849888965617461424e-2,
0.17207423310577291102e-2, 0.63681090387985537364e-3,
0.23276960030302567773e-3, 0.84145511838119915857e-4,
0.30115646493706434120e-4, 0.10680745813035087964e-4,
0.37565713615564248453e-5, 0.13111367785052622794e-5,
0.45437916254218158081e-6, 0.15642984632975371803e-6,
0.53523276400816416929e-7, 0.18207786280204973113e-7,
0.61604764947389226744e-8, 0.2e-8};
e=exp(.32663425997828098238*(z-1.11520724513161));
s=coeu[20]; for(n=19;n>=0;n--) { s*=e; s+=coeu[n]; }
// s=coeu[19]; for(n=18;n>=0;n--) { s*=e; s+=coeu[n]; }
return 4.+s*e;}
z_type F45E(z_type z){ DB b=sqrt(2.);
if(Re(z)<-1.) return f45E(z);
return exp(F45E(z-1.)*log(b));
}
z_type f45L(z_type z){ int n; z_type e,s;
DB Uco[21]={1,
-.44858743119526122890, .21208912005491969757,
-.10218436750697167872, 0.49698683037371830337e-1,
-0.2430759032611955221e-1, 0.11933088396510860210e-1,
-0.587369764200886206e-2, 0.289686728710575713e-2,
-0.1430908106079253664e-2, 0.7076637148565759223e-3,
-0.3503296158729878e-3, 0.17357560046634138e-3,
-0.86061011929162626e-4, 0.426959089012891e-4,
-0.2119302906819844809e-4, 0.1052442259960e-4,
-0.52285174354086e-5, 0.259844999161e-5,
-0.129178211214818578e-5, 0.4e-6 };
z-=4.;
s=Uco[19]; for(n=18; n>=0; n--){ s*=z; s+=Uco[n]; }
// s=Uco[20]; for(n=19; n>=0; n--){ s*=z; s+=Uco[n]; }
// return log(s*z)/.32663425997828098238 +1.1152091357215375;
return log(s*z)/.32663425997828098238 +1.11520724513161;
}
z_type F45L(z_type z){ DB b=sqrt(2.);
if(abs(z-4.)>.4) return F45L(log(z)/log(b))+1. ;
return f45L(z);
}
// #include"sqrt2f45E.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=501,M1=M+1;
int N=403,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("sqrt2figL45e.eps","w"); ado(o,202,202);
fprintf(o,"101 101 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-10.+.04*(m-.5);
//DO(n,N1) Y[n]=-10.+.04*(n-.5);
DO(n,200) Y[n]=sinh(3.*(n-200.5)/200.);
Y[200]=-.0001;
Y[201]= .0001;
for(n=202;n<N1;n++) Y[n]=sinh(3.*(n-200.5-2)/200.);
for(m=-10;m<11;m++) {M(m,-10)L(m,10)}
for(n=-10;n<11;n++) {M( -10,n)L(10,n)}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
fprintf(o," .006 W 0 0 0 RGB S\n");
// z_type tm,tp,F[M1*N1];
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DO(m,M1){x=X[m];
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=F45E(z);
c=F45L(z);
p=Re(c);
q=Im(c);
if(p>-15. && p<15. && q>-15. && q<15.
// && fabs(p)>1.e-14
// && fabs(q)>1.e-14
) { g[m*N1+n]=p; f[m*N1+n]=q;}
}}
p=2.5; q=.8;
for(m=-10;m<10;m++)for(n=2 ;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q); fprintf(o,".01 W 0 .6 0 RGB S\n");
for(m=0;m<11;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q); fprintf(o,".01 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q); fprintf(o,".01 W 0 0 .9 RGB S\n");
for(m= 1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".03 W .8 0 0 RGB S\n");
for(m= 1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".03 W 0 0 .8 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-2*p,2*p); fprintf(o,".03 W .5 0 .5 RGB S\n");
for(m=-11;m<16;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".03 W 0 0 0 RGB S\n");
// #include "plofu.cin"
M(-10,0)L(4,0)fprintf(o,"0 setlinecap .04 W 1 1 1 RGB S\n");
for(n=0;n<28;n++){ M(4-.5*(n+.2),0) L(4-.5*(n+.4),0) } fprintf(o,".06 W 1 .5 0 RGB S\n");
for(n=0;n<28;n++){ M(4-.5*(n+.7),0) L(4-.5*(n+.9),0) } fprintf(o,".06 W 0 .5 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf sqrt2figL45e.eps");
system( "open sqrt2figL45e.pdf"); //for macintosh
}
Latex generator of labels
% % Copyleft 2012 by Dmitrii Kouznetsov %<br>
\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\usepackage{graphicx} %<br>
\usepackage{rotating} %<br>
\paperwidth 1050pt %<br>
\paperheight 1040pt %<br>
\topmargin -98pt %<br>
\oddsidemargin -99pt %<br>
\textwidth 1100pt %<br>
\textheight 1100pt %<br>
\pagestyle {empty} %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\newcommand \ing {\includegraphics} %<br>
\begin{document} %<br>
\sx{5}{ \begin{picture}(208,205) %<br>
% \put(6,5){\ing{arctaniacontour}} %<br>
% \put(6,5){\ing{sqrt2figf45e}} %<br>
\put(6,5){\ing{sqrt2figL45e}} %<br>
\put(2,203.4){\sx{.7}{$y$}} %<br>
\put(2,184){\sx{.6}{$8$}} %<br>
\put(2,164){\sx{.6}{$6$}} %<br>
\put(2,144){\sx{.6}{$4$}} %<br>
\put(2,124){\sx{.6}{$2$}} %<br>
\put(2,104){\sx{.6}{$0$}} %<br>
\put(-3,84){\sx{.6}{$-2$}} %<br>
\put(-3,64){\sx{.6}{$-4$}} %<br>
\put(-3,44){\sx{.6}{$-6$}} %<br>
\put(-3,24){\sx{.6}{$-8$}} %<br>
\put(-2,00){\sx{.6}{$-10$}} %<br>
\put( 22,0){\sx{.6}{$-8$}} %<br>
\put( 42,0){\sx{.6}{$-6$}} %<br>
\put( 62,0){\sx{.6}{$-4$}} %<br>
\put( 82,0){\sx{.6}{$-2$}} %<br>
\put(106,0){\sx{.6}{$0$}} %<br>
\put(126,0){\sx{.6}{$2$}} %<br>
\put(146,0){\sx{.6}{$4$}} %<br>
\put(166,0){\sx{.6}{$6$}} %<br>
\put(186,0){\sx{.6}{$8$}} %<br>
\put(203,0){\sx{.7}{$x$}} %<br>
%<br>
\put(020,103.5){\sx{.99}{\bf cut}} %<br>
\put(182,103.5){\sx{.99}{$v\!=\!0$}} %<br>
%<br>
\put(97,200){\rot{-73}\sx{.99}{$u\!=\!4$}\ero}%<br>
\put(175,182){\rot{12}\sx{.99}{$u\!=\!3.4$}\ero}%<br>
\put(182,153){\rot{-21}\sx{.99}{$u\!=\!3$}\ero}%<br>
\put(185,55){\rot{21}\sx{.99}{$u\!=\!3$}\ero}%<br>
\put(174,25){\rot{-13}\sx{.99}{$u\!=\!3.4$}\ero}%<br>
\put(103.4,15){\rot{71}\sx{.99}{$u\!=\!4$}\ero}%<br>
\put(074.6,29){\rot{42}\sx{.99}{$u\!=\!4.2$}\ero}%<br>
\put(059,60){\rot{7}\sx{.99}{$u\!=\!4.4$}\ero}%<br>
%<br>
\put(160,189){\rot{-60}\sx{.99}{$v\!=\!1$}\ero}%<br>
\put(147,6){\rot{42}\sx{.99}{$v\!=\!-1$}\ero}%<br>
%<br>
\put(42,163){\rot{64}\sx{.99}{$v\!=\!1$}\ero}%<br>
\put(113,122){\rot{65}\sx{.99}{$v\!=\!2$}\ero}%<br>
\end{picture} %<br>
} %<br>
\end{document}
References
- ↑ http://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf D.Kouznetsov, H.Trappmnn. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, v.271, July 2010, p.1727-1756.
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - Lambert Academic Publishing, 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
Keywords
«Abel function», «Abelexponential», «Abelfunction», «AuExp», «Base sqrt2», «BaseSqrt2», «Regular iteration», «SuExp», «Superfunction», «Superfunctions», «Table of superfunctions»,
«Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 2,180 × 2,159 (1.07 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.