File:Itelin125T.jpg
Original file (2,088 × 2,088 pixels, file size: 893 KB, MIME type: image/jpeg)
Iterates of the linear function
\(T(z)=A+B z\)
for \(A\!=\!1\), \(B\!=\!2\)
\(y=T^n(x)\) is plotted versus \(x\) for various values of \(n\).
The picture is used as Fig.4.2 at page 34 of book «Superfunctions»
[1][2],
in order to show that some superfunctions are indeed simple and one uses them without to know that they are superfunctions -
in the similar way as M.Jourdain did not know that he speaks in prose [3].
C++ Generator of lines
// File ado.cin should be loaded in the working directory in order to compile the C++ code below
//#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#define DO(x,y) for(x=0;x<y;x++)
#define DB double
#include"ado.cin"
DB A=1.0000;
DB B=2.000;
DB T(DB c,DB x){ DB Bc=pow(B,c); return A*(Bc-1.)/(B-1.) + Bc*x; }
DB U(DB c,DB x){ DB Bc=pow(B,c); return (x-A*(Bc-1.)/(B-1.))/Bc; }
int main(){ FILE *o; int m,n,k; DB c, x,y,t;
o=fopen("itelin125.eps","w");
ado(o,1002,1002);
#define M(x,y) fprintf(o,"%7.4f %7.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%7.4f %7.4f L\n",0.+x,0.+y);
fprintf(o,"501 501 translate 100 100 scale 2 setlinecap\n");
for(n=-5;n<6;n++) { M(-5,n)L(5,n)}
for(m=-5;m<6;m++) { M(m,-5)L(m,5)}
fprintf(o,".004 W S\n");
c= 40.001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 0 1 0 RGB S\n");
c= 4.000001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 0 1 0 RGB S\n");
c= 3.000001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 0 1 0 RGB S\n");
c= 2.000001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 0 1 0 RGB S\n");
c= 1.000001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 0 1 0 RGB S\n");
c= 0.000001; x=-5.;y=T(c,x); if(y<-7.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".02 W 0 0 0 RGB S\n");
c=-1.000001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 1 0 1 RGB S\n");
c=-2.000001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 1 0 1 RGB S\n");
c=-3.000001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 1 0 1 RGB S\n");
c=-4.000001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 1 0 1 RGB S\n");
c=-40.0001; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);fprintf(o,".03 W 1 0 1 RGB S\n");
DO(n,31){c=-3.000001+.2*n; x=-5.;y=T(c,x); if(y<-5.){y=-5.;x=U(c,y);} M(x,y);x=5.;y=T(c,x); if(y>5.){y=5.;x=U(c,y);}L(x,y);}
fprintf(o,".012 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o);
system("epstopdf itelin125.eps");
system( "open itelin125.pdf");
}
//
Latex generator of curves
%\documentclass[12pt]{article}
\paperwidth 1006pt
\paperheight 1006pt
\textwidth 1800pt
\textheight 1800pt
\topmargin -108pt
\oddsidemargin -72pt
\parindent 0pt
\pagestyle{empty}
\usepackage {graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\begin{document}
\begin{picture}(1004,1004)
\put(0,0){\ing{itelin125}}
\put(480,984){\sx{3}{$y$}}
\put(480,892){\sx{3}{$4$}}
\put(480,792){\sx{3}{$3$}}
\put(480,692){\sx{3}{$2$}}
\put(480,592){\sx{3}{$1$}}
\put(479,492){\sx{3}{$0$}}
\put(454,391){\sx{3}{$-1$}}
\put(454,291){\sx{3}{$-2$}}
\put(454,191){\sx{3}{$-3$}}
\put(454,91){\sx{3}{$-4$}}
\put(70,475){\sx{3}{$-4$}}
\put(170,475){\sx{3}{$-3$}}
\put(270,475){\sx{3}{$-2$}}
\put(370,475){\sx{3}{$-1$}}
\put(495,475){\sx{3}{$0$}}
\put(595,475){\sx{3}{$1$}}
\put(695,475){\sx{3}{$2$}}
\put(795,475){\sx{3}{$3$}}
\put(895,475){\sx{3}{$4$}}
\put(984,476){\sx{3.1}{$x$}}
\put(410,870){\rot{89}\sx{3.1}{$n\!\rightarrow\!\infty$}\ero}
\put(440,870){\rot{84}\sx{3.1}{$n\!=\!4$}\ero}
\put(470,870){\rot{82}\sx{3.1}{$n\!=\!3$}\ero}
\put(530,870){\rot{74}\sx{3.1}{$n\!=\!2$}\ero}
\put(616,870){\rot{65}\sx{3.1}{$n\!=\!1.2$}\ero}
\put(646,870){\rot{62}\sx{3.1}{$n\!=\!1$}\ero}
\put(682,870){\rot{59}\sx{3.1}{$n\!=\!0.8$}\ero}
\put(724,870){\rot{57}\sx{3.1}{$n\!=\!0.6$}\ero}
\put(768,870){\rot{53}\sx{3.1}{$n\!=\!0.4$}\ero}
\put(822,870){\rot{48}\sx{3.1}{$n\!=\!0.2$}\ero}
\put(880,867){\rot{45}\sx{3.1}{$n\!=\!0$}\ero}
\put(890,813){\rot{41}\sx{3.1}{$n\!=\!-0.2$}\ero}
\put(889,760){\rot{36}\sx{3.1}{$n\!=\!-0.4$}\ero}
\put(889,712){\rot{32}\sx{3.1}{$n\!=\!-0.6$}\ero}
\put(889,671){\rot{29}\sx{3.1}{$n\!=\!-0.8$}\ero}
\put(889,633){\rot{26}\sx{3.1}{$n\!=\!-1$}\ero}
\put(905,518){\rot{13}\sx{3.1}{$n\!=\!-2$}\ero}
\put(900,422){\rot{4}\sx{3.1}{$n\!=\!-4$}\ero}
\put(874,392){\rot{.01}\sx{3.1}{$n\!\rightarrow\!-\infty$}\ero}
\end{picture}
\end{document}
%
References
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
- ↑ http://moliere-in-english.com/2007/scripts/bourgeois/ J.B.Moliere. The Bourgeois Gentleman. (1670) English adaptation by Timothy Mooney. Act Two, Scene Four. .. These forty years now, I’ve been speaking in prose without knowing it!
Keywords
«Superfunctions», «Суперфункции»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 19:00, 18 September 2013 | 2,088 × 2,088 (893 KB) | T (talk | contribs) | Iterates of the linear function $T(z)=A+B z$ for $A\!=\!1$, $B\!=\!2. $y=T^n(x)$ is plotted versus $x$ for various values of $n$. Category:Linear function Category:Iteration Category:Explicit plot Category:C++ Cateogry:Latex |
You cannot overwrite this file.
File usage
The following page uses this file: